Ошибка!

Показать Ошибка!

Забыли пароль?

Ошибка!

Ошибка!

Скрыть Ошибка!

Скрыть Ошибка!

Забыли пароль? Напишите ваш email и мы отправим письмо с инструкциями.

Ошибка!

Обратно

Закрыть

Создан новый 36-ядерный процессор

Создан новый 36-ядерный процессор
Исследователи из Массачусетского технологического института экспериментировали с принципиально новой технологией для многоядерных процессоров, которая берет свою идею в работе интернет-маршрутизаторов, способная сделать поток данных между ядрами быстрее и надежнее. Идея в настоящее время подвергается испытанию на инновационном 36-ядерном процессоре.


Проблема с шинами

Потребляемая мощность процессора прямопропорциональна его частоте. Конструкторы процессоров в последние годы перестали увеличивать их частоту, избрав вместо этого возможность повышения производительности за счет увеличения числа ядер.

Многоядерные процессоры, как правило, быстрее одноядерных, поскольку могут разделить вычислительную нагрузку на множество частей и запускать их параллельно, а не последовательно. Но не каждая вычислительная задача может быть легко разделена на равные части и осуществляться независимо. Для того, чтобы эффективно завершить свой кусок вычислений, каждое ядро должно обмениваться данными с другими ядрами. Обычно это происходит через единый пучок проводов под названием "шина".

Проблема в том, что когда два ядра общаются друг с другом через шину, она становится недоступной для других ядер, а это означает, что эта архитектура не будет масштабироваться на массовых многоядерных процессорах.

Существующие процессоры от двух до восьми ядер расположились в границах архитектуры одной шины. Десятиядерные чипы в высокопроизводительных серверах содержат в себя вторую шину, но добавление большего количества шин просто не поможет в будущем, когда процессоры будут включать в себя сотни, возможно даже тысячи ядер, а при использовании долгих путей увеличится расход энергии.

"Интернет-процессор"

Исследовательская группа Массачусетского технологического института во главе с Ли-Шуан Пе предлагает новый путь ядрам для связи друг с другом, преимущество которого в большей масштабируемости. Подход команды похож на тот, что используется для обеспечения маршрутизации пакетов данных, передаваемых по Интернету, и дает возможность данным найти другие пути между ядрами, таким образом, делая связь намного более быстрой.

Вместо того, чтобы полагаться на одну шину, Пе с коллегами представили себе систему, в которой каждое ядро в процессоре может общаться с четырьмя ядрами, расположенными рядом, сразу и способными распределять данные по мере необходимости. Это означает использование более коротких путей, благодаря чему будет более низкое напряжение и значительно более низкое энергопотребление для межъядерной связи.

Как в случае с интернет-маршрутизатором, пути, через которые проходят данные, можно легко сменить, чтобы добраться до места назначения. В этом контексте, это полезно в случаях, когда участок шины уже загружен другими данными.

Исследователи спроектировали и сконструировали свой собственный 36-ядерный процессор с применением этой архитектуры, чтобы проверить её производительность. Они будут использовать этот прототип, если также решат одну из самых больших проблем, с которой сталкиваются при попытках создать сетевой чип, - поддержку когерентности кэша.

Когерентность

Отправка данных от ядра вплоть до конца их пути занимает относительно много времени. Для того, чтобы ускорить вычисления, каждое ядро имеет свой собственный кэш, очень небольшой, но дающий ядру доступ ко всем временным вычислениям.

Поскольку несколько ядер могут  обрабатывать одни и те же данные одновременно, то должен быть способ поддержания соответствия между кэш-памятью в различных ядрах. Обычные компьютерные процессоры используют для этого протокол, когда каждое ядро поддерживает связь через шину с другими ядрами, что может привести к очистке кэш-памяти.

Если ядро обновляет данные в своем локальном кэше, оно немедленно сообщает об этом остальным. Так что теперь, если другое ядро хочет получить доступ к обновленным значениям, оно должно транслировать запрос через шину, и при их наличии, они отправляются по запросу. Из-за того, что есть только одна общая шина и только одна межъядерная связь одновременно, синхронизация сохранения данных становится относительно простым действием.

Но если изъять шину и позволить данным распространяться несинхронизированно, как в случае с процессором Пе, поддержание когерентности кэша становится более сложным процессом. Исследователи решили эту проблему, добавив к основной сети дополнительную, которая рассылает уведомления по всему процессору как только одно ядро запрашивает часть данных другого ядра.

Каждый маршрутизатор знает, какие были выпущены запросы, и с помощью какого ядра, потому что каждому из 36 ядер процессора присвоен различный приоритет. Этот иерархический порядок имитирует хронологический, в котором запросы будут передаваться по стандартной шине, а это означает, что прежний протокол по-прежнему работает, но теперь становится легко масштабируемым для процессоров, которые могут иметь сотни и даже тысячи ядер.

Что дальше?

Исследователи планируют проверить свой 36-ядерный процессор и оценить его производительность, используя модифицированную версию операционной системы Linux.

После этого команда раскроет аппаратные описания процессора в виде открытого исходного кода, что повышает вероятность того, что мы сможем увидеть такую коммерческую архитектуру процессора в ближайшем будущем.

----------

Если в семье ожидается пополнение, то вы наверняка уже готовитесь к этому дню. Вы покупаете одежду, кроватку игрушки и, конечно же, коляску. А выбрать ее можно на сайте https://mymal.ru/kolyaski/kolyaski-2-v-1. Большой ассортимент, отличное качество.

Комментарии:

Еще нет комментариев, станьте первым коментатором!
Войдите на зайт или зарегистрируйтесь, чтобы оставлять комментарии!
1
Ультратонкое покрытие делает солнечные батареи самоочищающимися

Ультратонкое покрытие делает солнечные батареи самоочищающимися

Солнечные панели не могут эффективно работать когда грязные, но их регулярная очистка может занять много времени. Инженеры в Германии разработали ультратонкое покрытие, которое сделает солнечные панели и другие поверхности самоочищающимися.

Солнечная энергия — крупнейший источник возобновляемой энергии, и быстро растет. Но, как можно себе представить, невозможно отправить кого-то со шваброй для очистки миллионов солнечных панелей в каждом парке. В идеале они бы сами очищались, и теперь исследователи из Института Фраунгофера в Германии добились успехов в этой концепции. Команда создала покрытие, которое меняет свою реакцию на воду в ...
30.01.23 13:27
0
-1
Метеориты раскрывают вероятное происхождение летучих химических веществ Земли

Метеориты раскрывают вероятное происхождение летучих химических веществ Земли

Метеориты рассказали исследователям о вероятном далеком происхождении летучих химических веществ Земли, некоторые из которых составляют строительные кирпичики жизни.

Они обнаружили, что около половины земных запасов летучего элемента цинка приходится на астероиды, происходящие из внешней части Солнечной системы — части за поясом астероидов, который включает планеты Юпитер, Сатурн и Уран. Предполагается, что из этого материала были получены и другие важные летучие вещества, такие как вода. Летучие вещества — это элементы или соединения, которые переходят из тв...
28.01.23 14:04
0
2
Впервые представлен бестопливный генератор электроэнергии от компании Neutrino Energy Group

Впервые представлен бестопливный генератор электроэнергии от компании Neutrino Energy Group

Технологическое развитие экономики и общества неразрывно связано с появлением новых материалов и исследованием их свойств, в частности наноматериалов.

Если проанализировать наиболее критичные области экономики, которые находятся сегодня в эпицентре санкций и антисанкций, - это энергоресурсы и IT, в первую очередь, разработки различных чипов. Но развитие любой из стран, в первую очередь, попадающих под различные ограничения, показывает, что не только правительста и госкомпании, но и национальный бизнес готов направлять финансовые инвестиции и ин...
27.01.23 18:23
0
0
Тороидальные винты: бесшумный переворот в воздухе и воде

Тороидальные винты: бесшумный переворот в воздухе и воде

Такие винты странной формы с витыми тороидами выглядят как революционное достижение для авиации и морского сектора. Радикально тише, чем традиционные пропеллеры как в воздухе, так и в воде, они также демонстрируют значительный прирост эффективности.

Пропеллеры предназначены для подачи воздуха или воды и использования вращательного движения для их проталкивания. В некотором смысле они являются эволюцией винта Архимеда, который использовался в Древнем Египте за тысячи лет до того, как он был описан Архимедом в 234 году до нашей эры. Однако для устройств, предназначенных для вращения, в течение очень долгого времени было мало революционных изме...
27.01.23 16:16
0
5
iPhone 14 и 14 Plus предлагают лучшие камеры, лучшее время автономной работы и технологию SOS

iPhone 14 и 14 Plus предлагают лучшие камеры, лучшее время автономной работы и технологию SOS

7 сентября Apple анонсировала новый iPhone 14 вместе с более крупным 14 Plus. Оба телефона 5G оснащены новой системой камер, функцией обнаружения сбоев, экстренным вызовом SOS через спутник и лучшим временем автономной работы среди всех iPhone.

У базового iPhone 14 6,1-дюймовый дисплей Super Retina XDR, а модель Plus — 6,7 дюйма. Дисплеи оснащены прочным стеклом Ceramic Shield, а также водо- и пыленепроницаемы. Широко разрекламированная система камер включает в себя новые камеры Main, TrueDepth и Ultra wide. У камеры Main большая диафрагма 1,5 и пиксели размером 1,9 микрометра, что позволяет улучшать фото и видео при всех сценариях осв...
11.09.22 10:54
0
0
Дистанционно управляемые тараканы-киборги теперь питаются от Солнца

Дистанционно управляемые тараканы-киборги теперь питаются от Солнца

Зачем создавать роботов с нуля, если природа уже сделала за нас большую часть тяжелой работы? Это причина создания насекомых-киборгов, и теперь ученые нашли способ сделать дистанционно управляемых тараканов-киборгов более совершенными, питая их с помощью специальных солнечных батарей.

Насекомые используют целый ряд мощных органов чувств, они достаточно малы, чтобы добраться до недоступных для нас мест, они могут выживать в неблагоприятных условиях, они могут с легкостью карабкаться по поверхности или летать. Все это полезные атрибуты для роботов — или, что еще лучше, киборгов, если прикрепить электронные устройства к живым насекомым. За прошедшие годы многие виды насекомых под...
06.09.22 08:12
0
10
Оптический чип обрабатывает почти 2 миллиарда изображений в секунду

Оптический чип обрабатывает почти 2 миллиарда изображений в секунду

Исследователи разработали новый мощный оптический чип, способный обрабатывать почти 2 миллиарда изображений в секунду. Устройство состоит из нейронной сети, которая показывает, как свет, не нуждаясь в компонентах, замедляющих работу побочных эффектов компьютерных микросхем.

В основе нового чипа лежит нейронная сеть - система, моделирующая то, как мозговая информация. Эти сети происходят из узлов, которые соединяются друг с другом с появлением нейронов, и они даже «обучаются» органическому мозгу, занимаясь набором данных, например, распознавание объектов на изображениях или словах в речи. Со временем они намного лучше справляются с задачами. Но вместо электрических с...
08.06.22 07:10
0
3
Самые быстрые логические вентили могут сделать компьютеры в миллион раз быстрее

Самые быстрые логические вентили могут сделать компьютеры в миллион раз быстрее

Логические вентили - это фундаментальные строительные блоки компьютеров, и исследователи из Университета Рочестера разработали самые быстрые из созданных.

Уничтожая графен и золото лазерными импульсами, новые логические вентили работают в миллион раз быстрее, чем в существующих компьютерах, демонстрируя жизнеспособность «световолновой электроники». Логические элементы принимают два входа, сравнивают их, а затем выводят сигнал на основе результата. Например, они могут выводить 1, если оба входящих сигнала равны 1 или 0, или если один из них или ни о...
14.05.22 10:42
0