Ошибка!

Показать Ошибка!

Забыли пароль?

Ошибка!

Ошибка!

Скрыть Ошибка!

Скрыть Ошибка!

Забыли пароль? Напишите ваш email и мы отправим письмо с инструкциями.

Ошибка!

Обратно

Закрыть

Преломление звездного света атмосферами экзопланет

 Преломление звездного света атмосферами экзопланет
Ученые исследуют два случая преломления света экзопланетами во время их транзита мимо родительских звезд.


 

Когда планета проходит транзитом перед своей родительской звездой, часть света звезды проходит через атмосферу планеты и производит спектр передачи, который несет детальную информацию об атмосфере планеты. Этот метод использовался учеными для того, чтобы характеризовать атмосферы экзопланет в пределах планет от горячего Юпитера до Суперземли. Новый телескоп Джеймса Уэбба, который готовится к запуску в 2018 году, должен значительно увеличить шансы ученых на использование метода спектроскопии при изучении атмосфер более маленьких экзопланет, чем Суперземля.

Свет преломляется и изгибается, когда он проходит через атмосферу планеты из-за градиента индекса преломления. Это вызвано тем, что индекс преломления зависит от высоты. В утонченной верхней атмосфере планеты индекс преломления ниже по сравнению с плотной более низкой атмосферой. Во время событий, связанных с транзитом планеты перед ее звездой-хозяином, главный эффект преломления состоит в том, что часть света при прохождении звезды через атмосферу планеты может быть преломлена к отдаленному наблюдателю до транзита и преломлена далеко от отдаленного наблюдателя во время транзита.

Принимая во внимание эффект преломления, исследователь Амит Мисра (Amit Misra) и его коллеги смоделировали в этом году спектр передачи Земного аналога (т.е. планеты, которая идентична Земле во всех отношениях) до и во время транзита перед родительской звездой. Эти два случая были выдвинуты на первый план в исследовании. В первом случае, земной аналог вращается вокруг подобной Солнцу звезды и земной аналог, вращающегося вокруг звезды M5V, то есть красного карлика. Из-за преломления есть максимальный уровень давления тангенса, который может быть исследован со спектроскопией передачи во время случая транзита. В исследовании максимальное давление тангенса определено как уровень давления в атмосфере планеты, в которой переданы 50 процентов звездного потока.

Рисунок 1: видение художника землеподобной планеты на орбите вокруг красной карликовой звезды. Поскольку красная карликовая звезда намного более прохладна и менее ярка, чем Солнце, планета должна была бы быть намного ближе к своей звезде для того, чтобы получить достаточно тепла, чтобы быть пригодной для жизни. На таком близком расстоянии планета была бы постоянно повернута к своей родительской звезде  одним полушарием, что, вероятно, привело бы к необычной климатической системе.

Рисунок 2: видение художника землеподобной планеты вокруг Солнца.

Результаты эксперимента показывают, что для земного аналога, вращающегося вокруг звезды M5V, спектроскопия передачи во время транзита может исследовать атмосферу планеты с давлениям до ~0.9 баров. Это давление - максимальный уровень давления тангенса, и это соответствует высоте примерно 1 км, указывая, что почти вся атмосфера может быть исследована. Для земного аналога, вращающегося вокруг подобной Солнцу звезде, максимальный уровень давления тангенса во время транзита - ~0.3 бара, что соответствует высоте примерно 14 км. Это означает, что спектроскопия передачи неэффективна в исследовании более низких слоев атмосферы планеты.

Различные газы в атмосфере производят различные спектральные особенности, которые могут быть идентифицированы в спектре передачи атмосферы планеты во время транзита. Эффект преломления уменьшает сигнал к шумовому отношению (SNR) этих спектральных особенностей. Для земного аналога, вращающегося вокруг звезды M5V, уменьшение в SNR составляет ~10 процентов для всех спектральных особенностей и ~15 процентов для особенностей H2O. Для земного аналога, вращающегося вокруг подобной Солнцу звезды, уменьшение в SNR намного больше, ~60 процентов для всех спектральных особенностей и ~75 процентов для особенностей H2O.

По мере прогрессирования транзита, преломление производит временные изменения в спектре передачи атмосферы планеты. Различия в спектрах передачи между каждой стадией прогрессии транзита могут показать зависимое от высоты изобилие газов, таким образом позволяя вертикальное профилирование атмосферы планеты. На Земле изобилие газов, таких как кислород и углекислый газ однородно всюду по атмосфере. Однако у газов, таких как H2O, озон и метан есть зависимое от высоты изобилие. Например, H2O в изобилии в более низких высотах, но становится утонченным на высотах выше ~10 км.

Рисунок 3: модель атмосферного температурного профиля Земли и газовых отношений смешивания объема.

Рисунок 4: Максимальная сумма переданного звездного потока в каждой высоте для земного аналога, вращающегося вокруг подобной Солнцу звезды и земного аналога, вращающегося вокруг звезды M5V.

Для земного аналога, вращающегося вокруг подобной Солнцу звезды, возможно, до входа в транзит, исследовать нижнюю атмосферу планеты. Это вызвано тем, что у более плотной более низкой атмосферы планеты есть больший индекс преломления, что позволяет свету быть отклоненным в целом на достаточный угол и быть видимым для  отдаленного наблюдателя даже при том, что планета все еще на некотором расстоянии от того, чтобы начать свой транзит перед родительской звездой. Однако переданный звездный поток до входа в транзит очень маленький, так как большая часть атмосферы планеты непрозрачна. Во время самого транзита, особенно во время середины транзита, те же самые большие углы отклонения, соответствующие более плотной более низкой атмосфере планеты, отклоняют звездный поток и делают его практически невидимым для отдаленного наблюдателя. Это определяет максимальное давление тангенса и препятствует тому, чтобы более плотная более низкая атмосфера была исследована спектроскопией передачи во время самого транзита.

Ожидается, что телескоп Джеймса Уэбба (JWST) будет в состоянии обнаружить спектр передачи земного аналога, вращающегося вокруг звезды M5V. Тем не менее, спектр передачи земного аналога, вращающегося вокруг подобной Солнцу звезды, был бы вне возможностей обнаружения телескопа JWST. Вертикальное профилирование атмосферы земного аналога, наблюдая временные изменения в спектрах передачи ее атмосферы также вне возможностей JWST независимо от того, является ли звезда вблизи изучаемой экзопланеты подобной Солнцу звездой или звездой как красный карлик M5V.

 

Рисунок 5: Диаграмма, показывающая, какие высоты могут быть исследованы в разное время во время транзита для земного аналога, вращающегося вокруг подобной Солнцу звезды. Цветные области соответствуют областям атмосферы, куда звездный поток передан, и белые области - части атмосферы, которые непрозрачны для отдаленного наблюдателя. Во время (фиолетовой) ранней стадии передачи звездного потока происходит  на высоте от ~2 до 15 км. Впоследствии, звездный поток передан через более высокие части атмосферы: ~5 км – 17 км (голубым) , ~30 км (желтым) , выше 7 км (синий). Поскольку планета достигает центра транзита (зеленый, потом красный), большая часть звездного потока передана на высотах выше ~14 км. 

 Рисунок 6: Зависимость стадий транзита (разные цвета) от высоты передачи светового спектра.

Комментарии:

Еще нет комментариев, станьте первым коментатором!
Войдите на зайт или зарегистрируйтесь, чтобы оставлять комментарии!
0
Хаббл обнаружил первые свидетельства наличия водяного пара на Ганимеде

Хаббл обнаружил первые свидетельства наличия водяного пара на Ганимеде

Впервые астрономы обнаружили свидетельства водяного пара в атмосфере спутника Юпитера Ганимеда. Водяной пар образуется, когда лед с поверхности луны сублимируется, то есть превращается из твердого вещества в газ.

Предыдущие исследования предоставили косвенные доказательства того, что Ганимед, самая большая луна в Солнечной системе, содержит больше воды, чем все океаны Земли. При этом температура там настолько низкая, что вода на поверхности замерзает. Океан Ганимеда будет располагаться примерно на 100 миль ниже земной коры; следовательно, водяной пар – это не испарение океана. Астрономы пересмотрели наблю...
27.07.21 10:28
0
1
НАСА выбрало SpaceX для миссии к Европе

НАСА выбрало SpaceX для миссии к Европе

В пятницу НАСА заявило, что выбрало SpaceX для запуска запланированного рейса к ледяному спутнику Юпитера Европе, что стало огромной победой компании Илона Маска, которая нацелена глубже в Солнечную систему.

Миссия Europa Clipper будет запущена в октябре 2024 года на ракете Falcon Heavy из Космического центра Кеннеди во Флориде, общая стоимость контракта составляет 178 миллионов долларов. Ранее предполагалось, что миссия будет запущена на собственной ракете НАСА Space Launch System (SLS), страдающей от задержек и перерасхода средств. И хотя SLS еще не работает, Falcon Heavy уж использовался как в ком...
26.07.21 10:59
0
0
Искусственный интеллект помогает НАСА точнее рассматривать Солнце

Искусственный интеллект помогает НАСА точнее рассматривать Солнце

Группа исследователей использует методы искусственного интеллекта для калибровки некоторых изображений Солнца, помогая улучшить данные, которые ученые используют для исследований Солнца.

У солнечного телескопа тяжелая работа. Рассмотрение Солнца наносит тяжелый урон, с постоянной атакой нескончаемым потоком солнечных частиц и интенсивным солнечным светом. Со временем чувствительные линзы и сенсоры солнечных телескопов начинают разрушаться. Чтобы гарантировать точность данных, отправляемых такими инструментами, ученые периодически проводят повторную калибровку, чтобы понять, как ме...
25.07.21 13:32
0
1
Астрономы впервые четко обнаружили диск формирующейся луны вокруг экзопланеты

Астрономы впервые четко обнаружили диск формирующейся луны вокруг экзопланеты

Используя Атакамскую большую [антенну] решётку миллиметрового диапазона (ALMA), астрономы впервые однозначно обнаружили присутствие диска вокруг планеты за пределами Солнечной системы. Наблюдения прольют новый свет на образование лун и планет в молодых звездных системах.

«Наша работа представляет собой четкое обнаружение диска, в котором могут формироваться спутники», - говорит Мириам Бенисти, исследователь из Университета Гренобля, Франция, и Университета Чили, возглавлявшая новое исследование. «Наши наблюдения ALMA были получены с таким прекрасным разрешением, что мы смогли четко определить, что диск связан с планетой, и впервые смогли вычислить его размер». Ра...
23.07.21 11:21
0
0
Хаббл обнаружил первые свидетельства наличия водяного пара на Ганимеде

Хаббл обнаружил первые свидетельства наличия водяного пара на Ганимеде

Впервые астрономы обнаружили свидетельства водяного пара в атмосфере спутника Юпитера Ганимеда. Водяной пар образуется, когда лед с поверхности луны сублимируется, то есть превращается из твердого вещества в газ.

Предыдущие исследования предоставили косвенные доказательства того, что Ганимед, самая большая луна в Солнечной системе, содержит больше воды, чем все океаны Земли. При этом температура там настолько низкая, что вода на поверхности замерзает. Океан Ганимеда будет располагаться примерно на 100 миль ниже земной коры; следовательно, водяной пар – это не испарение океана. Астрономы пересмотрели наблю...
27.07.21 10:28
0
1
НАСА выбрало SpaceX для миссии к Европе

НАСА выбрало SpaceX для миссии к Европе

В пятницу НАСА заявило, что выбрало SpaceX для запуска запланированного рейса к ледяному спутнику Юпитера Европе, что стало огромной победой компании Илона Маска, которая нацелена глубже в Солнечную систему.

Миссия Europa Clipper будет запущена в октябре 2024 года на ракете Falcon Heavy из Космического центра Кеннеди во Флориде, общая стоимость контракта составляет 178 миллионов долларов. Ранее предполагалось, что миссия будет запущена на собственной ракете НАСА Space Launch System (SLS), страдающей от задержек и перерасхода средств. И хотя SLS еще не работает, Falcon Heavy уж использовался как в ком...
26.07.21 10:59
0
0
Искусственный интеллект помогает НАСА точнее рассматривать Солнце

Искусственный интеллект помогает НАСА точнее рассматривать Солнце

Группа исследователей использует методы искусственного интеллекта для калибровки некоторых изображений Солнца, помогая улучшить данные, которые ученые используют для исследований Солнца.

У солнечного телескопа тяжелая работа. Рассмотрение Солнца наносит тяжелый урон, с постоянной атакой нескончаемым потоком солнечных частиц и интенсивным солнечным светом. Со временем чувствительные линзы и сенсоры солнечных телескопов начинают разрушаться. Чтобы гарантировать точность данных, отправляемых такими инструментами, ученые периодически проводят повторную калибровку, чтобы понять, как ме...
25.07.21 13:32
0
1
Астрономы впервые четко обнаружили диск формирующейся луны вокруг экзопланеты

Астрономы впервые четко обнаружили диск формирующейся луны вокруг экзопланеты

Используя Атакамскую большую [антенну] решётку миллиметрового диапазона (ALMA), астрономы впервые однозначно обнаружили присутствие диска вокруг планеты за пределами Солнечной системы. Наблюдения прольют новый свет на образование лун и планет в молодых звездных системах.

«Наша работа представляет собой четкое обнаружение диска, в котором могут формироваться спутники», - говорит Мириам Бенисти, исследователь из Университета Гренобля, Франция, и Университета Чили, возглавлявшая новое исследование. «Наши наблюдения ALMA были получены с таким прекрасным разрешением, что мы смогли четко определить, что диск связан с планетой, и впервые смогли вычислить его размер». Ра...
23.07.21 11:21
0