Ошибка!

Показать Ошибка!

Забыли пароль?

Ошибка!

Ошибка!

Скрыть Ошибка!

Скрыть Ошибка!

Забыли пароль? Напишите ваш email и мы отправим письмо с инструкциями.

Ошибка!

Обратно

Закрыть

Искаженное пространство-время поможет WFIRST найти экзопланеты

Искаженное пространство-время поможет WFIRST найти экзопланеты
Телескоп НАСА WFIRST будет искать планеты вне Солнечной системы в направлении центра Млечного Пути, где находится большинство звезд.


Изучение свойств экзопланетных миров поможет понять, на что похожи планетные системы по всей галактике, как формируются и развиваются планеты.

Объединение результатов WFIRST с результатами миссий Kepler и TESS завершит первую перепись планет и приблизит нас к открытию пригодных для жизни миров за пределами нашего.

На сегодняшний день астрономы обнаружили большинство планет во время транзита, когда они проходят перед звездой-хозяйкой, временно перекрывая свет звезды. Данные WFIRST также могут определять транзиты, но миссия будет в первую очередь следить за противоположным эффектом - небольшими скачками излучения, вызванными микролинзированием. Эти события встречаются гораздо реже, чем транзитные, потому что основаны на случайном выравнивании двух широко разнесенных и не связанных между собой звезд, дрейфующих в пространстве.

«Сигналы микролинзирования с малых планет редкие и краткие, но они сильнее сигналов других методов», - сказал Дэвид Беннетт, руководитель группы гравитационного микролинзирования в Центре космических полетов имени Годдарда НАСА. «Поскольку это событие одно на миллион, ключом в поиске WFIRST планет малой массы – поиск среди сотен миллионов звезд».

Метод микролинзирования сможет лучше обнаружить планеты внутри и за пределами обитаемой зоны - орбитального расстояния, на котором на планетах может быть жидкая вода на поверхности.

Этот эффект возникает, когда свет проходит вблизи массивного объекта. Все, что связано с массой, деформирует ткань пространства-времени, создавая что-то вроде вмятины, как шар для боулинга на батуте. Свет движется по прямой линии, но если пространство-время изогнуто - что происходит рядом с чем-то массивным, - свет искривляется.


Каждый раз, когда две звезды выровнены с нашей точкой наблюдения, свет от более отдаленных изгибов звезды проходит по искривленному пространству-времени ближайшей звезды. Это явление, одно из предсказаний общей теории относительности Эйнштейна, было подтверждено британским физиком Артуром Эддингтоном во время полного солнечного затмения в 1919 году. Если выравнивание особенно близко, ближайшая звезда действует как естественная космическая линза, фокусируясь и усиливая свет от фоновой звезды.

Планеты, вращающиеся вокруг звезды переднего плана, также могут изменять свет, выступая в роли их собственных крошечных линз. Искажение, которое они создают, позволяет астрономам измерить массу планеты и расстояние от ее главной звезды. Именно так WFIRST будет использовать микролинзирование для открытия новых миров.

 «Попытка интерпретировать популяцию планет сегодня - это все равно, что пытаться интерпретировать наполовину скрытую картину», - сказал Мэтью Пенни, доцент кафедры физики и астрономии в Университете штата Луизиана в Батон-Руж, который руководил исследованием, чтобы предсказать возможности микролинзовой съемки WFIRST. «Чтобы полностью понять, как формируются планетные системы, нам нужно найти планеты всех масс на всех расстояниях. Ни один метод не может сделать это, но исследование микролинзирования WFIRST, в сочетании с результатами Kepler и TESS, покажет гораздо большую часть картины».

До настоящего времени было обнаружено более 4000 подтвержденных экзопланет, но только 86 были обнаружены с помощью микролинзирования. Методы, обычно используемые для нахождения других миров, смещены в сторону планет, которые сильно отличаются от тех, которые существуют в Солнечной системе. Например, метод транзита лучше всего подходит для поиска планет, подобных Нептуну, у которых орбиты намного меньше, чем у Меркурия. Для солнечной системы, подобной нашей, метод транзита может пропустить любую планету.

Микролинзовое исследование WFIRST поможет найти аналоги для каждой планеты в нашей Солнечной системе, кроме Меркурия, чья малая орбита и малая масса выводят его за границы миссии. WFIRST найдет планеты, масса которых около Земли и даже меньше, возможно, даже большие луны, такие как Ганимед.

WFIRST найдет планеты и в других малоизученных категориях. Микролинзирование лучше всего подходит для нахождения миров в обитаемой зоне их звезды и дальше. Это включает в себя ледяных гигантов, таких как Уран и Нептун в нашей системе, и даже планеты-изгои - миры, свободно бродящие по галактике, не связанные ни с какими звездами.

Хотя ледяные гиганты составляют меньшинство в нашей системе, исследование 2016 года показало, что они могут быть самым распространенным видом планет во всей галактике. WFIRST проверит эту теорию и поможет лучше понять, какие характеристики планет наиболее распространены.


WFIRST исследует районы галактики, которые еще не были систематически исследованы в поисках экзопланет из-за различных целей предыдущих миссий. Kepler, например, обыскивал скромную область размером около 100 квадратных градусов с 100 000 звезд на расстояниях около 1000 световых лет. TESS сканирует все небо и отслеживает 200 000 звезд на расстоянии около 100 световых лет. WFIRST будет искать примерно на 3 квадратных градусах, но будет иследовать за 200 миллионов звезд на расстоянии около 10 000 световых лет.

Поскольку WFIRST - это инфракрасный телескоп, он будет видеть сквозь облака пыли, которые мешают другим телескопам изучать планеты в переполненном центральном районе нашей галактики. Большинство наземных наблюдений микролинзирования до настоящего времени проводились в видимом свете, что делало центр галактики в значительной степени неизведанной территорией. Обследование с помощью микролинзирования, проводимое с 2015 года с использованием инфракрасного телескопа Соединенного Королевства (UKIRT) на Гавайях, облегчает процесс переписи экзопланет WFIRST путем составления карты региона.

Обзор UKIRT обеспечивает первые измерения скорости событий микролинзирования к ядру галактики, где звезды наиболее плотно сконцентрированы. Результаты помогут астрономам выбрать окончательную стратегию наблюдения для целей микролинзирования WFIRST.

Последняя цель команды UKIRT - обнаружение событий микролинзирования с использованием машинного обучения, что будет жизненно важно для WFIRST. Миссия будет производить такое огромное количество данных, что прочесывать их исключительно на глаз будет непрактично. Упорядочение поиска потребует автоматизированных процессов.

Дополнительные результаты UKIRT указывают на стратегию наблюдения, которая позволит выявить наибольшее количество возможных событий микролинзирования, избегая при этом самые толстые пылевые облака, которые могут блокировать даже инфракрасный свет.

«Наше текущее исследование с UKIRT закладывает основу, чтобы WFIRST мог провести первое космическое специализированное исследование с помощью микролинзирования», - сказала Саванна Джеклин, астроном из Университета Вандербильта, которая провела несколько исследований UKIRT. «Предыдущие миссии экзопланет расширили наши знания о планетных системах, и WFIRST приблизит нас на гигантский шаг к истинному пониманию того, как планеты - особенно те, которые находятся в обитаемых зонах звезд - формируются и развиваются».


Тот же обзор микролинзирования, который выявит тысячи планет, также обнаружит сотни других странных и интересных космических объектов. Ученые смогут изучать свободно плавающие тела с массами от Марса до 100 раз больше Солнца.

Нижний предел диапазона масс включает в себя планеты, которые были выброшены от своих звезд и теперь бродят по галактике как планеты-изгои. Далее идут коричневые карлики, которые слишком массивны, чтобы их можно было охарактеризовать как планеты, но недостаточно массивны, чтобы воспламеняться как звезды. Коричневые карлики не сияют так заметно, как звезды, но WFIRST сможет изучить их в инфракрасном свете через тепло, оставшееся от их образования.

Объекты на более высокой границе включают звездные трупы - нейтронные звезды и черные дыры. Изучение и измерение их массы поможет ученым понять больше о смертельных муках звезд при проведении переписи чёрных дыр звездной массы.

«Исследование с помощью микролинзирования WFIRST не только улучшит наше понимание планетных систем, - сказал Пенни, - оно также позволит провести целый ряд других исследований изменчивости 200 миллионов звезд, структуры и формирование внутреннего Млечного пути и населения, состоящего из черных дыр и других темных, компактных объектов, которые трудно или невозможно изучить каким-либо другим способом».

Финансирование программы WFIRST продлится до сентября 2020 года. Бюджетная заявка на FY2021 предлагает прекратить финансирование миссии WFIRST и сосредоточиться на завершении космического телескопа Джеймса Уэбба, который планируется запустить в марте 2021 года. Администрация не готова продолжить работу с другим телескопом стоимостью несколько миллиардов долларов, пока Уэбба не будет успешно запущен и развернут.

Комментарии:

Еще нет комментариев, станьте первым коментатором!
Войдите на зайт или зарегистрируйтесь, чтобы оставлять комментарии!
0
Молекулярные облака продлевают себе жизнь, постоянно собирая себя заново

Молекулярные облака продлевают себе жизнь, постоянно собирая себя заново

Астрономы недавно обнаружили, что гигантские облака молекулярного водорода, место рождения звезд, могут жить десятки миллионов лет, так как отдельные молекулы постоянно разрушаются и собираются заново. Это новое исследование помогает внести важный вклад в понимание общей картины того, как рождаются звезды.

Чтобы создать звезды, сначала нужны гигантские облака молекулярного газообразного водорода. Это резервуары, которые могут подвергнуться катастрофическому коллапсу. При этом могут появиться сразу десятки и даже сотни звезд. Без резервуаров газа невозможно создать звезды, поэтому астрономов особенно интересует, как ведут себя эти облака. Эволюция облаков в галактической среде может рассказать об ист...
31.01.23 08:45
0
1
Ультратонкое покрытие делает солнечные батареи самоочищающимися

Ультратонкое покрытие делает солнечные батареи самоочищающимися

Солнечные панели не могут эффективно работать когда грязные, но их регулярная очистка может занять много времени. Инженеры в Германии разработали ультратонкое покрытие, которое сделает солнечные панели и другие поверхности самоочищающимися.

Солнечная энергия — крупнейший источник возобновляемой энергии, и быстро растет. Но, как можно себе представить, невозможно отправить кого-то со шваброй для очистки миллионов солнечных панелей в каждом парке. В идеале они бы сами очищались, и теперь исследователи из Института Фраунгофера в Германии добились успехов в этой концепции. Команда создала покрытие, которое меняет свою реакцию на воду в ...
30.01.23 13:27
0
0
Метеориты раскрывают вероятное происхождение летучих химических веществ Земли

Метеориты раскрывают вероятное происхождение летучих химических веществ Земли

Метеориты рассказали исследователям о вероятном далеком происхождении летучих химических веществ Земли, некоторые из которых составляют строительные кирпичики жизни.

Они обнаружили, что около половины земных запасов летучего элемента цинка приходится на астероиды, происходящие из внешней части Солнечной системы — части за поясом астероидов, который включает планеты Юпитер, Сатурн и Уран. Предполагается, что из этого материала были получены и другие важные летучие вещества, такие как вода. Летучие вещества — это элементы или соединения, которые переходят из тв...
28.01.23 14:04
0
3
Впервые представлен бестопливный генератор электроэнергии от компании Neutrino Energy Group

Впервые представлен бестопливный генератор электроэнергии от компании Neutrino Energy Group

Технологическое развитие экономики и общества неразрывно связано с появлением новых материалов и исследованием их свойств, в частности наноматериалов.

Если проанализировать наиболее критичные области экономики, которые находятся сегодня в эпицентре санкций и антисанкций, - это энергоресурсы и IT, в первую очередь, разработки различных чипов. Но развитие любой из стран, в первую очередь, попадающих под различные ограничения, показывает, что не только правительста и госкомпании, но и национальный бизнес готов направлять финансовые инвестиции и ин...
27.01.23 18:23
0
0
Молекулярные облака продлевают себе жизнь, постоянно собирая себя заново

Молекулярные облака продлевают себе жизнь, постоянно собирая себя заново

Астрономы недавно обнаружили, что гигантские облака молекулярного водорода, место рождения звезд, могут жить десятки миллионов лет, так как отдельные молекулы постоянно разрушаются и собираются заново. Это новое исследование помогает внести важный вклад в понимание общей картины того, как рождаются звезды.

Чтобы создать звезды, сначала нужны гигантские облака молекулярного газообразного водорода. Это резервуары, которые могут подвергнуться катастрофическому коллапсу. При этом могут появиться сразу десятки и даже сотни звезд. Без резервуаров газа невозможно создать звезды, поэтому астрономов особенно интересует, как ведут себя эти облака. Эволюция облаков в галактической среде может рассказать об ист...
31.01.23 08:45
0
0
Метеориты раскрывают вероятное происхождение летучих химических веществ Земли

Метеориты раскрывают вероятное происхождение летучих химических веществ Земли

Метеориты рассказали исследователям о вероятном далеком происхождении летучих химических веществ Земли, некоторые из которых составляют строительные кирпичики жизни.

Они обнаружили, что около половины земных запасов летучего элемента цинка приходится на астероиды, происходящие из внешней части Солнечной системы — части за поясом астероидов, который включает планеты Юпитер, Сатурн и Уран. Предполагается, что из этого материала были получены и другие важные летучие вещества, такие как вода. Летучие вещества — это элементы или соединения, которые переходят из тв...
28.01.23 14:04
0
0
Внутреннее ядро Земли перестало вращаться?

Внутреннее ядро Земли перестало вращаться?

Внутренняя часть нашей планеты — очень загадочное место, и теперь ученые раскрыли новую странную тайну. Согласно новому исследованию, внутреннее ядро Земли недавно перестало вращаться относительно поверхности в рамках многолетнего цикла.

С тысячами километров горных пород на пути трудно получить хорошее представление о том, что именно происходит в центре Земли. Ученым приходится изучать его косвенно, измеряя изменения магнитного поля, древние кристаллы или то, как сейсмические волны от землетрясений распространяются сквозь разные слои. Это помогло геологам узнать новые детали, в том числе то, что ядро могло состоять из суперионног...
26.01.23 10:17
0
5
Двигатели спутников могут стать намного мощнее

Двигатели спутников могут стать намного мощнее

Считалось, что двигатели на эффекте Холла, широко используемые на орбите, должны быть большими для создания большей тяги. Новое исследование Мичиганского университета предполагает, что небольшие двигатели Холла могут генерировать гораздо большую тягу, что потенциально делает их кандидатами для межпланетных миссий.

«Раньше люди думали, что можно пропустить только определенное количество тока через площадь двигателя, что, в свою очередь, напрямую переводится в то, сколько силы или тяги получится создать на единицу площади», — сказал Бенджамин Йорнс, доцент аэрокосмической техники Университета штата Массачусетс, возглавивший исследование нового Холловского двигателя. Команда бросила вызов этому пределу, запус...
25.01.23 12:18
0