Ошибка!

Показать Ошибка!

Забыли пароль?

Ошибка!

Ошибка!

Скрыть Ошибка!

Скрыть Ошибка!

Забыли пароль? Напишите ваш email и мы отправим письмо с инструкциями.

Ошибка!

Обратно

Закрыть

Изобретен новый тип органических светодиодов (OLED)

Изобретен новый тип органических светодиодов (OLED)
Ученые из Университета в Юте (University of Utah) изобрели новый «спинтронный» органический светоизлучающий диод (OLED), который обещает стать ярче, дешевле и экологичнее в сравнении с другими видами светодиодов, активно применяемых сейчас при производстве современных телевизоров, компьютерных мониторов, осветительных приборов, светофоров и многих других электронных устройств.


 

Спин-поляризованный органический светоизлучающий диод

«Это совершенно иная технология», - утверждает профессор физики Вали Вардени (Valy Vardeny) из Университета в Юте, главный автор научной работы, посвященной новому типу светодиодов. Исследование было опубликовано в выпуске журнала Science от 13 июля. «Эти новые органические светоизлучающие диоды должны превзойти по яркости обычные диоды».

Физики из Юты создали прототип нового типа LED – по-научному называющийся «спин-поляризованным органическим светоизлучающим диодом», или спиновый светодиод (spin-OLED) – который производит излучение оранжевого цвета. Доктор Вардени считает, что через пару лет с помощью новой технологии можно будет выпускать диоды красного и синего цвета, а также, возможно, и белые спиновые светодиоды.

 

Оранжевый свет, излучаемый органическим светодиодом нового типа

 

Впрочем, должно пройти не менее пяти лет, прежде чем новые светодиоды попадут на массовый рынок, поскольку сейчас они способны работать только при температурах не выше минус двух градусов по Цельсию, а следовательно их предстоит серьезно улучшить, чтобы новые светодиоды могли функционировать при комнатной температуре, добавляет Вардени.

Профессор Вали Вардени изобрел новый тип LED в сотрудничестве с То Нгуеном (Tho D. Nguyen), старшим преподавателем физики, и Итаном Еренфроендом (Eitan Ehrenfreund), физиком из Израильского Технологического Института в Хайфе.

Исследование спонсировалось Национальным Научным Фондом США (NSF), Департаментом Энергетики США, Израильским Научным Фондом и Совместным Американо-Израильским Научным Фондом. Научная работа является частью инициативы Центра инженерных наук и новых материалов Университета Юты, который получает финансирование от NSF и Исследовательского научно-технологического фонда штата Юты.

 

Эволюция технологий LED и OLED

Самые первые светодиоды, представленные в ранних 1960-х, базировались на стандартных полупроводниках, генерирующих видимое излучение. Более продвинутые органические светодиоды, использующие органические полимерные, или «пластиковые», полупроводники, приобрели большую популярность лишь в последнее десятилетие. OLED-дисплеи можно увидеть в мобильных электронных устройствах вроде смартфонов, цифровых камер и медиаплееров.  Ожидается, что в скором времени органические светодиоды станут применяться и для комнатного освещения.  А уже в этом году в магазинах электроники появятся телевизоры, оснащенные большими OLED-дисплеями.

Что касается нового типа органических светодиодов, созданного физиками из Юты, он также основан на органических полупроводниках, однако не является просто электронным устройством, которое хранит некоторые данные, закодированные зарядами электронов. Это именно «спинтронное» устройство, в котором спины электронов служат в качестве носителей информации.

Изобретение нового спин-OLED стало возможным благодаря другому устройству – органическому спиновому затвору (organic spin valve), о создании которого доктор Вардени и его коллеги сообщили в журнале Nature в 2004 году. Оригинальный спиновый затвор был способен лишь регулировать протекание электрического заряда, но исследователи надеялись, что им когда-нибудь удастся модифицировать его таким образом, чтобы он мог излучать свет, то есть из органического спинового затвора сделать органический светодиод.

«На это у нас ушло восемь лет», - говорит профессор Вардени. Спиновые затворы – это электрические «переключатели», использующиеся в компьютерах, телевизорах, смартфонах и многих других электронных устройствах. Они были названы затворами потому, что задействуют свойство электронов, известное как «спин», передавать информацию. Спин определяется как собственный момент импульса элементарных частиц. Спины электронов могут иметь одно из двух направлений: вверх или вниз, которые соответствуют нулям и единицам в бинарном коде.

Органические спиновые затворы состоят из трех слоев: органического слоя, действующего как полупроводник и располагающегося между двух других слоев – металлических электродов-ферромагнетиков. В новом спиновом светодиоде, один из ферромагнетических металлических электродов изготовлен из кобальта, а другой – из химически сложной субстанции, называющейся лантанно-стронциевой окисью магния (lanthanum strontium manganese oxide). Органический слой в новом OLED получен из полимера с необычным наименованием «дейтерированный DOO-PPV», который и является полупроводником, излучающим оранжевый свет.

Ширина светодиода, также как и его длина, составляет 300 микрометров (что равно суммарной ширине от трех до шести человеческих волос), а высота – около 40 нанометров (то есть примерно в тысячу раз тоньше волоса человека).

Под воздействием малого напряжения отрицательно заряженные электроны и положительно заряженные «электронные дыры» проходят через органический полупроводник. Если к электронам применяется магнитное поле, спины электронов и электронных дыр в полупроводнике можно выравнивать параллельно или же в противоположных направлениях.

 

Два достижения, сделавших возможным появление нового типа OLED

В своем новом исследовании физики указывают на два важных достижения в области новых материалов, которые были использованы для создания новых «биполярных» органических спиновых затворов, позволяющих спиновому светодиоду испускать свет, вместо того чтобы просто регулировать электрический ток, как это делали органические затворы предыдущего поколения.

Первое из достижений связано с заменой обычного водорода на дейтерий в органическом слое спинового затвора. Дейтерий – это тяжелый водород, а точнее, атом водорода с одним лишним нейтроном, добавленным к протону и электрону. По словам профессора Вардени, использование дейтерия сделало процесс излучения света новым спиновым светодиодом более эффективным.

Второе достижение заключалось в применении крайне тонкого слоя фторида лития, размещенного на электроде из кобальта. Этой слой позволяет отрицательно заряженным электронам проникать в спиновый затвор с одной стороны, тогда как положительно заряженные электронные дыры попадают в затвор с другой стороны. Это и делает спиновый затвор «биполярным» - в отличие от предыдущих затворов, через которые могли протекать только электронные дыры.

Спиновый светодиод генерирует свет в видимом диапазоне под воздействием напряжения

 

Именно способность затвора пропускать через себя и электроны, и электронные дыры прямо связана с его свойством испускать видимый свет. Когда электрон рекомбинирует с электронной дырой, высвобождающаяся в результате энергия излучается в виде света. «Когда они встречаются, из них возникает «экситон», эти экситоны и дают нам свет», - объясняет профессор Вардени. Он также отмечает, что устройство, через которое проходят не только электронные дыры, но и электроны, выдерживает работу с электрическим током большей силы и излучает свет, интенсивность которого можно регулировать с помощью магнитного поля, в то время как другие типы светодиодов требуют дополнительную электрическую энергию для увеличения интенсивности светового потока.

Существующие светодиоды могут излучать свет только одного из трех цветов: красного, синего или зеленого – в зависимости от типа используемого полупроводника. Новые же спиновые светодиоды – поясняет профессор Вардени - особенно замечательны тем, что одно устройство, сделанное по такой технологии, способно давать разные цвета, которые соответствуют определенным значениям магнитного поля.  Наконец, устройства на базе органических светодиодов более дешевые в сравнении с обычными кремниевыми полупроводниками, а производство органических светодиодов оставляет меньше токсичных отходов.

----------

Многие уже давно зарабатывают в интернете. Стоит попробовать самому начать свое дело. Вам поможет платформа для вебинара. Попробуйте свои силы. возможно вы можете поделиться вашим опытом с другими.

Комментарии:

Еще нет комментариев, станьте первым коментатором!
Войдите на зайт или зарегистрируйтесь, чтобы оставлять комментарии!
1
Причины роста популярности Астрономии и Космоса среди молодого поколения

Причины роста популярности Астрономии и Космоса среди молодого поколения

Астрономия и космос всегда привлекали внимание людей всех возрастов, но особенно ярко эта наука проявляется среди молодого поколения.

Астрономия и космос всегда привлекали внимание людей всех возрастов, но особенно ярко эта наука проявляется среди молодого поколения. Многие факторы объясняют популярность астрономии среди молодых людей: от увлекательных открытий в области космоса до влияния культурных произведений. Сериалы, фильмы и другие произведения искусства о космических приключениях играют значительную роль в формировании ...
25.02.24 17:55
0
2
e-Learning в цифрах: 6 общих фактов, много данных и прогнозы на ближайшее будущее

e-Learning в цифрах: 6 общих фактов, много данных и прогнозы на ближайшее будущее

e-Learning – это обучение с помощью цифровых технологий (Интернета, электронных устройств и специальных программ). Процесс можно организовать в аудиториях или удалённо, одновременно для целой группы или по гибкому графику для каждого.

e-Learning – это обучение с помощью цифровых технологий (Интернета, электронных устройств и специальных программ). Процесс можно организовать в аудиториях или удалённо, одновременно для целой группы или по гибкому графику для каждого. Ранее эта система была не популярна. Затем вспыхнул COVID-19, и все перешли на «удалёнку»: школы, ВУЗы, компании. Электронное обучение стало нужным в глобальном мас...
28.12.23 18:10
0
7
Энергорезонатор Neutrino Power Cube - электроэнергия под воздействием невидимого спектра излучений

Энергорезонатор Neutrino Power Cube - электроэнергия под воздействием невидимого спектра излучений

Следующим этапом на пути к отказу от ископаемого топлива станут, вероятнее всего, энергетические технологии, связанные с возможностью преобразования энергии полей материи Луи де Бройля, обладающих корпускулярно-волновыми свойствами, в электрический ток.

Следующим этапом на пути к отказу от ископаемого топлива станут, вероятнее всего, энергетические технологии, связанные с возможностью преобразования энергии полей материи Луи де Бройля, обладающих корпускулярно-волновыми свойствами, в электрический ток. Это одно из перспективных направлений в науке, дающее серьёзный шанс диверсифицировать способы получения электроэнергии, а более конкретно, одно и...
30.09.23 06:25
0
11
Возобновляются работы по возведению грандиозного километрового небоскреба

Возобновляются работы по возведению грандиозного километрового небоскреба

Для архитектуры Саудовской Аравии 2023 год оказался просто невероятным. Сначала страна подтвердила, что строительство 170-километрового (105 миль) здания The Line будет продолжено, затем раскрыла планы строительства кубовидной башни, способной вместить 20 зданий Empire State Buildings.

Теперь страна возобновила реализацию своего амбициозного плана по строительству нового самого высокого здания в мире - башни Джидда. С момента завершения строительства в 2010 году дубайская башня Бурдж-Халифа (Burj Khalifa), высота которой составляет 828 м (2 717 футов), остается самым высоким рукотворным сооружением в мире. Хотя окончательная высота башни Джидда пока неизвестна, но она значитель...
22.09.23 09:06
0
0
«Квантовая суперхимия» впервые наблюдалась в лабораторных экспериментах

«Квантовая суперхимия» впервые наблюдалась в лабораторных экспериментах

Ученые из Чикагского университета обнаружили первое свидетельство явления под названием «квантовая суперхимия». Давно предсказанный, но так и не подтвержденный, этот эффект может ускорить химические реакции, дать ученым больше контроля над ними и послужить основой для квантовых вычислений.

Все виды необічного поведения проявляются на квантовом уровне. Атомы могут находиться в нескольких состояниях одновременно, запутываться настолько, что мгновенно обмениваются информацией на любом расстоянии, или создавать туннели через барьеры, которые они не должны пересекать. Ученые пытаются использовать эти явления для более мощных вычислений, систем связи и других технологий. Теперь команда о...
08.08.23 17:36
0
0
Умная ткань с покрытием из жидкого металла «заживает» при порезах и отталкивает бактерии

Умная ткань с покрытием из жидкого металла «заживает» при порезах и отталкивает бактерии

Наука продолжает развивать умные ткани, которые реагируют на изменения окружающей среды и предоставляют больше «услуг» своим владельцам.

Группа международных исследователей создала пригодную для носки ткань, которая восстанавливается, обладает антибактериальными свойствами и даже может использоваться для контроля сердечного ритма человека. Исследователи из США, Австралии и Южной Кореи создали ткань с высокой проводимостью, погрузив ее в частицы жидкого металла. Частицы жидкого металла обладают многими преимуществами: высокой тепло...
03.05.23 13:46
0
2
Лазер обнаруживает и идентифицирует бактерий за считанные минуты

Лазер обнаруживает и идентифицирует бактерий за считанные минуты

Чтобы увидеть, какой тип бактерий присутствуют в образце жидкости, необходимо выращивать бактериальные культуры в лаборатории в течение нескольких часов или даже дней. Новая лазерная техника работает всего за несколько минут.

Уже было известно, что при воздействии лазерного света бактерии отражают свет обратно в спектральном образце, который уникален для этого конкретного вида. Проблема в том, что другие микроскопические объекты в образце, такие как клетки крови или вирусы, также отражают свет, придавая ему свой уникальный оттенок. То есть спектральный «отпечаток пальца» бактерии теряется среди фонового шума, поэтому ...
04.03.23 11:39
0
6
Ультратонкое покрытие делает солнечные батареи самоочищающимися

Ультратонкое покрытие делает солнечные батареи самоочищающимися

Солнечные панели не могут эффективно работать когда грязные, но их регулярная очистка может занять много времени. Инженеры в Германии разработали ультратонкое покрытие, которое сделает солнечные панели и другие поверхности самоочищающимися.

Солнечная энергия — крупнейший источник возобновляемой энергии, и быстро растет. Но, как можно себе представить, невозможно отправить кого-то со шваброй для очистки миллионов солнечных панелей в каждом парке. В идеале они бы сами очищались, и теперь исследователи из Института Фраунгофера в Германии добились успехов в этой концепции. Команда создала покрытие, которое меняет свою реакцию на воду в ...
30.01.23 13:27
0