Ошибка!

Показать Ошибка!

Забыли пароль?

Ошибка!

Ошибка!

Скрыть Ошибка!

Скрыть Ошибка!

Забыли пароль? Напишите ваш email и мы отправим письмо с инструкциями.

Ошибка!

Обратно

Закрыть

Создан искусственный организм, вопроизводящий технику перемещения живых медуз

Создан искусственный организм, вопроизводящий технику перемещения живых медуз
Используя последние достижения в области морской биомеханики, науки о материалах и производства органических тканей, группа исследователей из Гарвардского Университета и Калифорнийского Технологического Института создала искусственную и при этом свободно плавающую «медузу» на основе «неодушевленного» силикона и живых клеток миокарда (сердечной мышцы).


 

 

Работа ученых может послужить доказательством в пользу возможности реализовывать на практике концепцию реинжиниринга (обратного проектирования) различных мышечных органов и простых живых организмов. Она также расширяет само понятие «синтетической жизни», под которым ранее подразумевалась репликация органических строительных блоков.

Метод проектирования органической ткани для создания медузы, прозванной «Медузоидом» (Medusoid), описывается в выпуске Nature Biotechnology от 22 июля.

Эксперт по клеточным и тканевым активным системам, соавтор работы Кевин Кит Паркер (Kevin Kit Parker) незадолго до этого уже продемонстрировал биоинженерную «конструкцию», которая может хватать окружающие предметы и даже самостоятельно передвигаться. Кроме того, его желание перейти к проектированию более сложных искусственных организмов совпало с неудовлетворенностью состоянием дел в кардиологической сфере.

Так же, как человеческое сердце прокачивает кровь через организм, медуза перемещается в воде, нагнетая и выпуская воду подобно помпе. Цель исследования заключалась в том, чтобы разобраться в принципах функционирования этой «живой помпы» и затем воспроизвести искусственную систему на базе модели двигательных способностей медузы.

 

Medusoid, или искуственная медуза, созданная для того, чтобы показать возможности проектирования и конструирования искусственных живых организмов

 

«В 2007 году меня посетила мысль о том, что мы, возможно, плохо понимаем фундаментальные законы, касающиеся мышечных помп», - говорит Паркер, профессор биоинженерии и прикладной физики из Гарвардской Школы Инженерных и Прикладных Наук (Harvard School of Engineering and Applied Sciences, SEAS) и участник подразделения по изучению клеточного ядра в Институте Биоинженерии Гарвардского Университета. «Тогда я стал присматриваться к морским организмам, которые передвигаются за счет органической помпы. Затем я увидел медузу в Аквариуме Новой Англии и сразу же отметил для себя сходство и различие между тем, как медуза и человеческое сердце прокачивают жидкость».

Профессор Паркер конструировал Медузоида в сотрудничестве с главным автором работы Дженной Наурот (Janna Nawroth), докторантом-биологом Калифорнийского Технологического Института (the California Institute of Technology, Caltech), которая проводила свои исследования в лаборатории Паркера. Также участие в этом проекте принимал профессор аэронавтики и биоинженерии Джон Дабири (John Dabiri), эксперт по биологическим двигательным системам.

«Перед нами стоит задача серьезно продвинуть вперед проектирование тканей», - поясняет Дженна. «Сейчас это скорее что-то вроде искусства, когда люди пытаются скопировать ткань или орган, отталкиваясь лишь от своих представлений о важности тех или иных базовых компонентов –  по сути, не понимая, действительно ли нужны эти компоненты для осуществления определенной функции, и без анализа возможностей применения разных материалов».

Медузы как старейшие организмы, содержащие в себе различные функциональные органы, стали идеальными объектами для изучения, поскольку они используют мускулатуру для прокачки воды и перемещения в водной среде, а их морфология подобна человеческому сердцу.

 

Снимки, демонстрирующие на наноуровне структуру мышечной ткани настоящей медузы (слева) и искусственного организма (справа)

 

Для реинжиниринга медузы исследователи позаимствовали аналитический инструментарий у криминалистической биометрии и кристаллографии, чтобы составить карты субклеточных протеиновых сетей внутри всех мышечных клеток животного. После этого они изучили электрофизиологические и биомеханические особенности сокращения мускулатуры и движения медузы в воде.

Оказалось, что наиболее подходящим исходным материалом для создания синтетической медузы является искусственно выращенная ткань миокарда крысы, которая, находясь в жидкой среде, способна сокращаться под воздействием электрической стимуляции. В дальнейшем команда ученых поместила силиконовую полимерную основу искусственного существа в тонкую мембрану, своей формой напоминающую медузу с восемью отростками-щупальцами.

Опираясь на все те же аналитические инструменты, исследователи смогли совместить субклеточную, клеточную и тканевую архитектуру мускулатуры медузы с клетками миокарда крысы.

Впоследствии искусственную биоконструкцию погрузили в соленую воду, химически схожую с океанической, после чего синхронизированные сокращения, инициированные электроимпульсами, привели новый организм в движение. (На самом деле, мышечные клетки начали сокращаться сами по себе еще до того, как начали поступать управляющие электрические сигналы).

 

Искусственно выращенная медуза (справа) перемещается в водной среде практически таким же образом, как и живая медуза (слева)

 

«По-моему, удивительно, что нам удалось воссоздать комплексное плавательное поведение, характерное для живой медузы, при помощи сравнительно простых компонентов: силиконовой основы и мышечных клеток», - замечает профессор Дабири.

Такой подход к проектированию, по словам исследователей, можно будет применять для реинжиниринга мышечных органов человека.

«Нам как инженерам привычно конструировать объекты из стали, меди или бетона», - дополняет Паркер. «Я рассматриваю клетки как альтернативный строительный материал, но нам необходимы его точные количественные характеристики, чтобы технология проектирования тканей стала доступной для регулярного применения. Медуза предоставляет алгоритм для реинжиниринга функции органа и установления параметров его работы. Мы можем выполнить полный цикл инженерно-проектировочного процесса: проектирование, конструирование и тестирование».

Помимо прогресса в области проектирования тканей, профессор Паркер считает важным создание живого существа с целью бросить вызов традиционной синтетической биологии, которая «сфокусирована на генетических манипуляциях с клетками». Вместо того чтобы конструировать одиночную клетку, он намерен «создать целое животное».

В будущем ученые собираются усовершенствовать искусственную медузу, так чтобы она могла разворачиваться и двигаться в определенном направлении, и даже включить в ее состав простой «мозг», чтобы организм был способен реагировать на окружающую его среду, а также демонстрировать более продвинутое поведение вроде следования за источником света или получения энергии из пищи.

Комментарии:

Еще нет комментариев, станьте первым коментатором!
Войдите на зайт или зарегистрируйтесь, чтобы оставлять комментарии!
-1
«Химические нейроны» находят и обрабатывают данные, хранящиеся в ДНК

«Химические нейроны» находят и обрабатывают данные, хранящиеся в ДНК

Ученые экспериментировали со способами использования ДНК в качестве носителя данных, но трудно извлекать записанные на нее данные и манипулировать ими. Теперь команда разработала «химические нейроны», которые могут проводить вычисления с данными, хранящимися в ДНК, и легко считывать ответы.

Современные системы хранения данных могут впечатлять, но, как и во многих других случаях, природа сделала это намного эффективнее, чем все, чего мы достигли. Один грамм ДНК может хранить до 215 миллионов ГБ данных, что теоретически означает, что содержимое всего Интернета может храниться в чем-то размером с обувную коробку. Более того, при правильных условиях ДНК может существовать тысячи или даже...
28.11.22 07:46
0
1
Космический телескоп Джеймса Уэбба раскрывает химические секреты далекого мира, открывая путь для изучения планет

Космический телескоп Джеймса Уэбба раскрывает химические секреты далекого мира, открывая путь для изучения планет

С тех пор как в 1995 году была открыта первая планета, вращающаяся вокруг звезды, отличной от Солнца, стало ясно, что планеты и планетные системы более разнообразны, чем мы могли себе представить. Такие экзопланеты дают нам возможность изучить, как планеты ведут себя в разных ситуациях. И изучение их атмосферы является важной частью головоломки.

Космический телескоп Джеймса Уэбба НАСА (JWST) — самый большой телескоп в космосе. Запущенный на Рождество 2021 года, он стал идеальным инструментом для исследования миров. Теперь ученые впервые использовали телескоп, чтобы раскрыть химический состав экзопланеты. И данные, выпущенные в виде препринта (еще не опубликованы в рецензируемом журнале), предлагают некоторые неожиданные результаты. Многи...
27.11.22 18:25
0
1
Исследование зоны появления сигнала Wow! ничего не выявило

Исследование зоны появления сигнала Wow! ничего не выявило

Международная группа астрономов провела двойное телескопическое исследование зоны, где возник сигнал Wow! и не смогла обнаружить какой-либо сигнал.

15 августа 1977 года радиотелескоп «Большое ухо» в кампусе Университета штата Огайо записал на бумажную ленту 72-секундный узкополосный сигнал. Несколько дней спустя Джерри Эхман, астроном из университета, изучил запись и нашел сигнал настолько необычным, что нацарапал слово «Wow!» рядом с точками данных. С тех пор этот сигнал долго обсуждался в астрономическом сообществе, но никто так и не смог ...
26.11.22 10:14
0
3
Возможно, в породах кратера Марса найдены органические соединения

Возможно, в породах кратера Марса найдены органические соединения

В исследовании в журнале Science анализируется несколько камней, найденных на дне кратера Езеро на Марсе, где в 2020 году приземлился марсоход Perseverance, что свидетельствует о значительном взаимодействии между камнями и жидкой водой. Эти породы также содержат доказательства, свидетельствующие о присутствии органических соединений.

Существование органических соединений (химических соединений с углеродно-водородными связями) не является прямым свидетельством жизни, поскольку они соединения могут быть созданы в результате небиологических процессов. Чтобы определить это, потребуется будущая миссия по возвращению образцов на Землю.Исследование под руководством исследователей из Калифорнийского технологического института было про...
25.11.22 09:19
0
-1
«Химические нейроны» находят и обрабатывают данные, хранящиеся в ДНК

«Химические нейроны» находят и обрабатывают данные, хранящиеся в ДНК

Ученые экспериментировали со способами использования ДНК в качестве носителя данных, но трудно извлекать записанные на нее данные и манипулировать ими. Теперь команда разработала «химические нейроны», которые могут проводить вычисления с данными, хранящимися в ДНК, и легко считывать ответы.

Современные системы хранения данных могут впечатлять, но, как и во многих других случаях, природа сделала это намного эффективнее, чем все, чего мы достигли. Один грамм ДНК может хранить до 215 миллионов ГБ данных, что теоретически означает, что содержимое всего Интернета может храниться в чем-то размером с обувную коробку. Более того, при правильных условиях ДНК может существовать тысячи или даже...
28.11.22 07:46
0
1
Шелк шелкопряда, подвергнутый химической ванне, на 70% прочнее паучьей паутины

Шелк шелкопряда, подвергнутый химической ванне, на 70% прочнее паучьей паутины

Как один из самых прочных материалов, известных науке, паутина регулярно оказывается в центре захватывающих инженерных прорывов, и новое исследование, включающее быструю химическую ванну, может вывести это исследование на новый уровень.

Ученые разработали новый метод обработки шелка тутового шелкопряда, который меняет его состав и повышает производительность, при этом конечный продукт обладает на 70% большей прочностью, чем паучья паутина.Ученые работают над воспроизведением невероятных свойств паучьего шелка интересными способами. Разведение пауков для производства материала в больших количествах — одна из возможностей, но их те...
09.10.22 11:47
0
1
Нобелевская премия по физике присуждена исследователям квантовой запутанности

Нобелевская премия по физике присуждена исследователям квантовой запутанности

Нобелевская премия по физике 2022 года была присуждена трем ученым за их работу в области новаторской квантовой информатики. Ален Аспе, Джон Ф. Клаузер и Антон Цайлингер провели одни из первых экспериментов с запутанными фотонами, открыв будущее для коммерческих квантовых компьютеров.

Жуткий мир квантовой физики предсказывает несколько неожиданных странностей, включая квантовую запутанность. Это состояние позволяет двум частицам настолько переплестись друг с другом, что изменения, внесенные в одну, мгновенно повлияют на другую, независимо от того, насколько далеко они друг от друга. Эта идея обеспокоила даже Эйнштейна, который утверждал, что квантовая физика является «неполной...
05.10.22 07:18
0
0
Самой белой краской в мире теперь может покрывать автомобили и самолеты

Самой белой краской в мире теперь может покрывать автомобили и самолеты

В прошлом году инженеры из Университета Пердью использовали свой опыт в области материаловедения для производства самой белой в мире краски, способной отражать около 98% падающего солнечного света и, следовательно, обладающей большим потенциалом, когда речь идет об энергоэффективности зданий.

Команда внесла некоторые изменения в рецепт и выпустила более тонкую и легкую версию, которая, по их словам, идеально подходит для использования в автомобилях, поездах и самолетах. Первоначальная версия ультрабелой краски обязана своей исключительной способностью отражать солнечный свет включению сульфата бария - химического соединения, используемого в фотобумаге и косметике. Он был добавлен в см...
05.10.22 07:02
0