Ошибка!

Показать Ошибка!

Забыли пароль?

Ошибка!

Ошибка!

Скрыть Ошибка!

Скрыть Ошибка!

Забыли пароль? Напишите ваш email и мы отправим письмо с инструкциями.

Ошибка!

Обратно

Закрыть

Ученые создали комплексную синтетическую вакцину на основе молекул ДНК

Ученые создали комплексную синтетическую вакцину на основе молекул ДНК
В поисках способов создания более безопасных и эффективных вакцин ученые из Института Биопроектирования Государственного Университета в Аризоне (Biodesign Institute at Arizona State University) обратились к многообещающему направлению, называющемуся ДНК-нанотехнологиями (DNA nanotechnology), чтобы получить совершенно новый тип синтетических вакцин.


 

 

Работая над исследованием, опубликованным недавно в журнале Nano Letters, иммунолог Юнг Чанг (Yung Chang) из Института Биопроектирования объединил усилия со своими коллегами, в числе которых упоминается известный специалист по ДНК-нанотехнологиям Хао Ян (Hao Yan), для того чтобы синтезировать первый в мире вакцинный комплекс, который можно безопасно и эффективно доставлять к нужным участкам посредством его размещения на самоорганизующихся, объемных ДНК-наноструктурах.

«Когда Хао предложил рассматривать ДНК не как генетический материал, а как рабочую платформу, у меня возникла мысль применить этот подход в иммунологии», - говорит Чанг, адъюнкт-профессор из Школы Бионаук (the School of Life Sciences) и исследователь из Центра Инфекционных Заболеваний и Вакцин при Институте Биопроектирования. «Это должно было дать нам отличную возможность воспользоваться ДНК-носителями для создания синтетической вакцины».

«Главный вопрос звучал так: безопасно ли это? Мы хотели воспроизвести группу молекул, которые могли бы вызвать безопасный и мощный иммунный ответ в организме. Поскольку команда под руководством Хао в течение последних нескольких лет занималась конструированием различных ДНК-наноструктур, мы начали сотрудничать с целью отыскать потенциальные сферы применения таких структур в области медицины».

 

Уникальность предложенного учеными из Аризоны метода заключается в том, что носителем антигена являвляется молекула ДНК

 

В мультидисциплинарную исследовательскую группу также входили: аспирант-биохимик из Университета в Аризоне, первый автор работы Сяовей Лиу (Xiaowei Liu), профессор Янг Су (Yang Xu), преподаватель биохимии Ян Лиу (Yan Liu), студент из Школы Бионаук Крейг Клиффорд (Craig Clifford) и Тао Ю (Tao Yu), аспирант из Сычуаньского Университета в Китае.

Чанг подчеркивает, что повсеместное внедрение вакцинации населения привело к одному из самых существенных триумфов общественной медицины. Искусство создания вакцин полагается на генную инженерию в плане конструирования вирусоподобных частиц из протеинов, стимулирующих иммунную систему. Такие частицы схожи по своей структуре с настоящими вирусами, но не содержат при этом опасных генетических компонентов, вызывающих заболевания.

Важное достоинство ДНК-нанотехнологии, в рамках которой биомолекуле можно придавать двух- или трехмерную форму, заключается в возможности очень точными методами создавать  молекулы, способные выполнять функции, характерные для естественных молекул в организме.

«Мы экспериментировали с разными размерами и формами ДНК-наноструктур и добавляли к ним биомолекулы, чтобы узнать, как на них отреагирует организм», - поясняет Ян, директор факультета химии и биохимии, исследователь из Центра Биофизики Одиночных Молекул (Center for Single Molecule Biophysics) при Институте Биопроектирования. Благодаря подходу, который ученые называют «биомимикрией», вакцинные комплексы, протестированные ими, приближаются по своим размерам и формам к природным вирусным частицам.

Чтобы показать перспективность своей концепции, исследователи закрепили имунностимулирующий протеин стрептавидин (STV), а также усиливающий иммунный ответ препарат CpG олигодеоксинуклетид на отдельных пирамидальных разветвленных ДНК-структурах, что должно было позволить им получить в итоге синтетический вакцинный комплекс.

 

Схематичное сравнение структур патогенного вируса гриппа (слева) и частицы синтетической вакцины (справа)

 

В первую очередь научной группе нужно было доказать, что клетки-«мишени» способны поглотить наноструктуры.  Присоединив светоизлучающую молекулу-метку к наноструктуре, ученые убедились в том, что наноструктура находит подобающее ей место в клетке и остается стабильной на протяжении нескольких часов – достаточно долго, для того чтобы вызвать иммунный ответ.

Затем, в опытах на мышах, ученые отрабатывали доставку вакцинного «груза» к клеткам, которые являются первыми звеньями в цепи иммунной реакции организма, координирующими взаимодействие между разными компонетнтами вроде антиген-представляющих клеток, включая макрофаги, дендритные клетки и B-клетки. После того как наноструктуры проникают в клетку,  они «анализируются» и «отображаются» на клеточной поверхности, так чтобы их распознали T-клетки, белые гемоциты (клетки крови), играющие центральную роль в процессе запуска защитной реакции организма. T-клетки, в свою очередь, помогают B-клеткам вырабатывать антитела против чужеродных антигенов.

Чтобы надежно протестировать все варианты, исследователи вводили в клетки как полный вакцинный комплекс, так и отдельно STV-антиген, а также STV-антиген, смешанный с CpG-усилителем.

По прошествии 70-дневного периода ученые обнаружили, что мыши, иммунизированные полным вакцинным комплексом, продемонстрировали иммунный ответ, в 9 раз более сильный по сравнению с вызванным смесью CpG c STV. Наиболее заметную реакцию инициировала структура именно тетраэдрической (пирамидальной) формы. Однако иммунный ответ на вакцинный комплекс признан не только специфическим (то есть реакцией организма на конкретный антиген, использовавшийся экспериментаторами) и эффективным, но и безопасным, что подтверждается отсутствием иммунной реакции на вводившиеся в клетки «пустые» ДНК (не несущие биомолекулы).

«Мы были весьма довольны», - говорит Чанг. «Так замечательно видеть результаты, которые мы сами предсказали. Такое не часто случается в биологии».

 

Будущее фармакологической отрасли за таргетированными лекарственными препаратами

 

Теперь команда исследователей размышляет над возможными перспективами нового метода стимулирования особых иммунных клеток с целью вызова реакции за счет использования ДНК-платформы.  На базе новой технологии можно создавать вакцины, состоящие из нескольких действующих препаратов, а также изменять цели для регуляции иммунного ответа.

Кроме того, новая технология обладает потенциалом для разработки новых способов целевой терапии, в частности, производства «таргетированных» лекарств, которые доставляются в строго отведенные участки организма и потому не дают опасные побочные эффекты.

Наконец, несмотря на то что ДНК-направление еще только развивается, научная работа исследователей из Аризоны имеет серьезное прикладное значение для медицины, электроники и других областей.

Чанг и Ян признают, что еще многое предстоит изучить и оптимизировать в представленном ими методе вакцинации, но ценность открытия неоспорима. «Имея на руках практическое подтверждение нашей концепции, мы теперь можем производить синтетические вакцины с неограниченным числом антигенов», - подводит итог Чанг.

Финансовая поддержка в проведении научной работы была оказана Министерством Обороны США и Национальными Институтами Здоровья.

Комментарии:

Еще нет комментариев, станьте первым коментатором!
Войдите на зайт или зарегистрируйтесь, чтобы оставлять комментарии!
0
Настольный голографический принтер создает 3D-анимации на дому

Настольный голографический принтер создает 3D-анимации на дому

Голограммы - одно из обещаний научной фантастики, которые остаются недостижимыми.

Бывший исследователь MIT Media Lab занимается краудфандингом настольного 3D-голографического принтера, который может создавать изображения, которые появляются в 3D и даже кажутся движущимися. Хотя отражающие экраны, гарнитуры и даже живые выступления мертвых артистов маскируются под голограммы, технически этот термин относится к определенному типу трехмерного изображения, закодированного на двухм...
08.03.21 21:49
0
0
Инженерное чудо: отливка шестого зеркала для Гигантского Магелланова телескопа

Инженерное чудо: отливка шестого зеркала для Гигантского Магелланова телескопа

Гигантский телескоп Магеллана объявляет о производстве шестого из семи крупнейших монолитных зеркал в мире.

Эти зеркала позволят астрономам заглянуть во Вселенную с большей детализацией, чем любой другой оптический телескоп. Шестое 8,4-метровое (27,5 фута) зеркало изготавливается в лаборатории зеркал Ричарда Ф. Кариса Университета Аризоны, и на его изготовление уйдет почти 4 года. Отливка зеркал считается чудом современной инженерии и обычно отмечается большим личным мероприятием с участием участников с...
07.03.21 13:53
0
1
Perseverance совершил первую поездку на 21 фут

Perseverance совершил первую поездку на 21 фут

На этой неделе новейший марсоход НАСА отправился на пыльную красную дорогу, показав на одометре 21 фут во время первого тест-драйва.

Марсоход Perseverance спустился со своей посадочной позиции в четверг, через две недели после приземления на Красной планете в поисках признаков прошлой жизни. Поездка по кругу длилась всего 33 минуты и прошла настолько хорошо, что в пятницу и субботу у шестиколесного вездехода было больше возможностей вождения. «Это действительно начало нашего пути», - сказал Рич Рибер, инженер НАСА, проложивши...
06.03.21 13:59
0
1
Впервые обнаружены органические материалы, необходимые для жизни, на поверхности астероида

Впервые обнаружены органические материалы, необходимые для жизни, на поверхности астероида

Новое исследование Royal Holloway обнаружило воду и органические вещества на поверхности образца астероида, привезенного из внутренней части Солнечной системы. Это первый случай, когда на астероиде были обнаружены органические материалы, которые могли стать химическими предшественниками происхождения жизни на Земле.

Образец был привезен на Землю с астероида Итокава во время первой миссии JAXA Хаябуса в 2010 году. Образец показывает, что вода и органическое вещество, происходящие от самого астероида, с течением времени химически эволюционировали. В исследовательском документе говорится, что Итокава постоянно эволюционировал на протяжении миллиардов лет, включая воду и органические материалы из чужеродных внез...
05.03.21 16:30
0
5
Поражение головного мозга у пациентов с Covid-19

Поражение головного мозга у пациентов с Covid-19

В ходе углубленного исследования того, как COVID-19 влияет на мозг пациента, исследователи Национального института здравоохранения США постоянно выявляли признаки повреждений, вызванных истончением и протеканием кровеносных сосудов головного мозга в образцах тканей пациентов, умерших вскоре после заражения болезнью.

Кроме того, они не обнаружили никаких признаков SARS-CoV-2 в образцах тканей, предполагая, что повреждение не было вызвано прямой вирусной атакой на мозг. «Мы обнаружили, что мозг пациентов, инфицированных SARS-CoV-2, может быть восприимчив к повреждению микрососудов. Наши результаты показывают, что это может быть вызвано воспалительной реакцией организма на вирус», - сказала Авиндра Нат, доктор...
04.01.21 17:30
0
-2
Генная терапия поможет предотвратить потерю зрения из-за генетического заболевания

Генная терапия поможет предотвратить потерю зрения из-за генетического заболевания

Исследователи из Ирландии разработали новый метод генной терапии, который может спасти зрение пациентов с генетическим заболеванием, приводящим к слепоте.

Состояние, известное как доминантная атрофия зрительного нерва, в настоящее время не имеет профилактических или лечебных средств, но в тестах на мышах и человеческих клетках команда смогла замедлить прогрессирование заболевания. Это наследственное заболевание и обычно проявляет первые симптомы в детстве, когда зрительные нервы пациентов начинают разрушаться. Это приводит к некоторой потере зрения...
29.11.20 19:26
0
0
Генная терапия частично восстанавливает зрение полностью слепым мышам

Генная терапия частично восстанавливает зрение полностью слепым мышам

При некоторых формах слепоты некоторые части глаза все еще работают, но повреждение светочувствительных клеток приводит к нарушению зрения. Исследователи из компании Nanoscope использовали генную терапию для обхода повреждённых клеток и восстановления определённого уровня зрения у полностью слепых мышей.

Фоторецепторы - это палочки и колбочки сетчатки, и эти клетки - первая ступень в цепи, которая обеспечивает зрение. Когда фоторецепторы активируются светом, они посылают химический сигнал другим нейронам сетчатки, включая так называемые биполярные клетки, которые, в свою очередь, посылают сигнал в зрительный нерв и в мозг для обработки. К сожалению, эти фоторецепторы повреждаются при многих забол...
26.10.20 22:51
0
5
Новый тест выявляет лучевую болезнь за час

Новый тест выявляет лучевую болезнь за час

Новый диагностический инструмент обещает значительно сократить время, необходимое для выявления лучевой болезни, путем измерения пары ключевых биомаркеров в одной капле крови.

Благодаря тому, что результаты будут готовы всего через несколько часов, эта технология может оказать большую помощь медицинским работникам, реагирующим на такие бедствия, как Чернобыль, позволяя быстро выявлять пациентов, которые нуждаются в немедленном лечении. Лучевая болезнь или острая лучевая болезнь (ОЛБ), как это случалось с работниками Чернобыльской АЭС в 1986 году или жителями Хиросимы и...
19.07.20 20:01
0