Ошибка!

Показать Ошибка!

Забыли пароль?

Ошибка!

Ошибка!

Скрыть Ошибка!

Скрыть Ошибка!

Забыли пароль? Напишите ваш email и мы отправим письмо с инструкциями.

Ошибка!

Обратно

Закрыть

Ученые создали комплексную синтетическую вакцину на основе молекул ДНК

Ученые создали комплексную синтетическую вакцину на основе молекул ДНК
В поисках способов создания более безопасных и эффективных вакцин ученые из Института Биопроектирования Государственного Университета в Аризоне (Biodesign Institute at Arizona State University) обратились к многообещающему направлению, называющемуся ДНК-нанотехнологиями (DNA nanotechnology), чтобы получить совершенно новый тип синтетических вакцин.


 

 

Работая над исследованием, опубликованным недавно в журнале Nano Letters, иммунолог Юнг Чанг (Yung Chang) из Института Биопроектирования объединил усилия со своими коллегами, в числе которых упоминается известный специалист по ДНК-нанотехнологиям Хао Ян (Hao Yan), для того чтобы синтезировать первый в мире вакцинный комплекс, который можно безопасно и эффективно доставлять к нужным участкам посредством его размещения на самоорганизующихся, объемных ДНК-наноструктурах.

«Когда Хао предложил рассматривать ДНК не как генетический материал, а как рабочую платформу, у меня возникла мысль применить этот подход в иммунологии», - говорит Чанг, адъюнкт-профессор из Школы Бионаук (the School of Life Sciences) и исследователь из Центра Инфекционных Заболеваний и Вакцин при Институте Биопроектирования. «Это должно было дать нам отличную возможность воспользоваться ДНК-носителями для создания синтетической вакцины».

«Главный вопрос звучал так: безопасно ли это? Мы хотели воспроизвести группу молекул, которые могли бы вызвать безопасный и мощный иммунный ответ в организме. Поскольку команда под руководством Хао в течение последних нескольких лет занималась конструированием различных ДНК-наноструктур, мы начали сотрудничать с целью отыскать потенциальные сферы применения таких структур в области медицины».

 

Уникальность предложенного учеными из Аризоны метода заключается в том, что носителем антигена являвляется молекула ДНК

 

В мультидисциплинарную исследовательскую группу также входили: аспирант-биохимик из Университета в Аризоне, первый автор работы Сяовей Лиу (Xiaowei Liu), профессор Янг Су (Yang Xu), преподаватель биохимии Ян Лиу (Yan Liu), студент из Школы Бионаук Крейг Клиффорд (Craig Clifford) и Тао Ю (Tao Yu), аспирант из Сычуаньского Университета в Китае.

Чанг подчеркивает, что повсеместное внедрение вакцинации населения привело к одному из самых существенных триумфов общественной медицины. Искусство создания вакцин полагается на генную инженерию в плане конструирования вирусоподобных частиц из протеинов, стимулирующих иммунную систему. Такие частицы схожи по своей структуре с настоящими вирусами, но не содержат при этом опасных генетических компонентов, вызывающих заболевания.

Важное достоинство ДНК-нанотехнологии, в рамках которой биомолекуле можно придавать двух- или трехмерную форму, заключается в возможности очень точными методами создавать  молекулы, способные выполнять функции, характерные для естественных молекул в организме.

«Мы экспериментировали с разными размерами и формами ДНК-наноструктур и добавляли к ним биомолекулы, чтобы узнать, как на них отреагирует организм», - поясняет Ян, директор факультета химии и биохимии, исследователь из Центра Биофизики Одиночных Молекул (Center for Single Molecule Biophysics) при Институте Биопроектирования. Благодаря подходу, который ученые называют «биомимикрией», вакцинные комплексы, протестированные ими, приближаются по своим размерам и формам к природным вирусным частицам.

Чтобы показать перспективность своей концепции, исследователи закрепили имунностимулирующий протеин стрептавидин (STV), а также усиливающий иммунный ответ препарат CpG олигодеоксинуклетид на отдельных пирамидальных разветвленных ДНК-структурах, что должно было позволить им получить в итоге синтетический вакцинный комплекс.

 

Схематичное сравнение структур патогенного вируса гриппа (слева) и частицы синтетической вакцины (справа)

 

В первую очередь научной группе нужно было доказать, что клетки-«мишени» способны поглотить наноструктуры.  Присоединив светоизлучающую молекулу-метку к наноструктуре, ученые убедились в том, что наноструктура находит подобающее ей место в клетке и остается стабильной на протяжении нескольких часов – достаточно долго, для того чтобы вызвать иммунный ответ.

Затем, в опытах на мышах, ученые отрабатывали доставку вакцинного «груза» к клеткам, которые являются первыми звеньями в цепи иммунной реакции организма, координирующими взаимодействие между разными компонетнтами вроде антиген-представляющих клеток, включая макрофаги, дендритные клетки и B-клетки. После того как наноструктуры проникают в клетку,  они «анализируются» и «отображаются» на клеточной поверхности, так чтобы их распознали T-клетки, белые гемоциты (клетки крови), играющие центральную роль в процессе запуска защитной реакции организма. T-клетки, в свою очередь, помогают B-клеткам вырабатывать антитела против чужеродных антигенов.

Чтобы надежно протестировать все варианты, исследователи вводили в клетки как полный вакцинный комплекс, так и отдельно STV-антиген, а также STV-антиген, смешанный с CpG-усилителем.

По прошествии 70-дневного периода ученые обнаружили, что мыши, иммунизированные полным вакцинным комплексом, продемонстрировали иммунный ответ, в 9 раз более сильный по сравнению с вызванным смесью CpG c STV. Наиболее заметную реакцию инициировала структура именно тетраэдрической (пирамидальной) формы. Однако иммунный ответ на вакцинный комплекс признан не только специфическим (то есть реакцией организма на конкретный антиген, использовавшийся экспериментаторами) и эффективным, но и безопасным, что подтверждается отсутствием иммунной реакции на вводившиеся в клетки «пустые» ДНК (не несущие биомолекулы).

«Мы были весьма довольны», - говорит Чанг. «Так замечательно видеть результаты, которые мы сами предсказали. Такое не часто случается в биологии».

 

Будущее фармакологической отрасли за таргетированными лекарственными препаратами

 

Теперь команда исследователей размышляет над возможными перспективами нового метода стимулирования особых иммунных клеток с целью вызова реакции за счет использования ДНК-платформы.  На базе новой технологии можно создавать вакцины, состоящие из нескольких действующих препаратов, а также изменять цели для регуляции иммунного ответа.

Кроме того, новая технология обладает потенциалом для разработки новых способов целевой терапии, в частности, производства «таргетированных» лекарств, которые доставляются в строго отведенные участки организма и потому не дают опасные побочные эффекты.

Наконец, несмотря на то что ДНК-направление еще только развивается, научная работа исследователей из Аризоны имеет серьезное прикладное значение для медицины, электроники и других областей.

Чанг и Ян признают, что еще многое предстоит изучить и оптимизировать в представленном ими методе вакцинации, но ценность открытия неоспорима. «Имея на руках практическое подтверждение нашей концепции, мы теперь можем производить синтетические вакцины с неограниченным числом антигенов», - подводит итог Чанг.

Финансовая поддержка в проведении научной работы была оказана Министерством Обороны США и Национальными Институтами Здоровья.

Комментарии:

Еще нет комментариев, станьте первым коментатором!
Войдите на зайт или зарегистрируйтесь, чтобы оставлять комментарии!
1
Впервые на карту нанесена граница гелиосферы

Впервые на карту нанесена граница гелиосферы

Впервые на карту была нанесена граница гелиосферы, что позволило ученым лучше понять, как взаимодействуют солнечный и межзвездный ветер.

«Физические модели теоретизировали эту границу в течение многих лет», - сказал Дэн Рейзенфельд, ученый из Лос-Аламосской национальной лаборатории и ведущий автор статьи, опубликованной в Astrophysical Journal. «Но впервые мы действительно смогли измерить его и составить трехмерную карту». Гелиосфера - это пузырь, созданный солнечным ветром, потоком протонов, электронов и альфа-частиц, который рас...
15.06.21 09:57
0
1
Смерть звезды сыграет в пинбол планетами

Смерть звезды сыграет в пинбол планетами

Четыре планеты, находящиеся в идеальном ритме вокруг ближайшей звезды, обречены на привязку к своей системе, когда их солнце погибнет, предсказывает новое исследование.

Астрономы смоделировали, как изменение гравитационных сил в системе в результате превращения звезды в белый карлик заставит ее планеты улететь с орбит и отскочить от силы тяжести друг друга, как шары в игре пинбол. В процессе они будут сбивать близлежащие обломки в умирающее солнце, предлагая ученым понимание изначального развития белых карликов с загрязненной атмосферой, которые мы видим сегодня...
14.06.21 12:20
0
1
Энергоэффективный туристический центр разместится под крышей от BIG

Энергоэффективный туристический центр разместится под крышей от BIG

Известная архитектурная компания Bjarke Ingels Group (BIG) представила дизайн нового туристического центра в Вестеросе, Швеция.

В рамках проекта под оригинальной волнистой крышей, которая будет вырабатывать солнечную энергию, будет размещена большая часть основных услуг транспортной инфраструктуры города. Туристический центр Вестероса - это новый взгляд на проект, первоначально введенный в эксплуатацию еще в 2015 году. Его площадь составит 16 963 кв.м. (182 000 кв. футов). В нем разместятся автобусная станция, стоянка так...
13.06.21 12:49
0
-1
Астрономы заметили мигающего гиганта недалеко от центра галактики

Астрономы заметили мигающего гиганта недалеко от центра галактики

Астрономы заметили гигантскую «мигающую» звезду в центре Млечного Пути, находящуюся на расстоянии более 25 000 световых лет.

Международная группа астрономов наблюдала за звездой VVV-WIT-08, яркость которой уменьшилась в 30 раз, из-за чего она почти исчезла с неба. Хотя многие звезды меняют яркость, потому что пульсируют или затмеваются другой звездой в двойной системе, очень редко звезда становится тусклее в течение нескольких месяцев, а затем снова становится ярче. Исследователи полагают, что VVV-WIT-08 может принадле...
12.06.21 19:26
0
0
Электронный нос обнаруживает рак в образцах крови с точностью более 90%

Электронный нос обнаруживает рак в образцах крови с точностью более 90%

Исследователи из Пенсильванского университета разработали электронный нос, который может обнаруживать признаки рака по образцам плазмы крови.

В ходе испытаний устройство смогло обнаруживать различные типы рака с точностью более 90 %. Летучие органические соединения (ЛОС) - это химические вещества, вызывающие запахи, из разных источников выделяются разные смеси. Чувствительные инструменты, такие как нос, могут обнаружить тонкие различия в составе и соотношении летучих органических соединений и определить, является ли этот запах кофе или...
04.06.21 12:55
0
1
Ген, имитирующий ограничение калорийности, продлевает здоровье и жизнь мышей

Ген, имитирующий ограничение калорийности, продлевает здоровье и жизнь мышей

С возрастом наше здоровье неизбежно ухудшается, но, кажется, мы сможем замедлить этот процесс.

Новое исследование, проведенное университетом Бар-Илан, показало, что усиление определенного гена у мышей может увеличить продолжительность их жизни и дольше сохранять их здоровье, имитируя эффекты диет с ограничением калорийности. Семейство белков Sirtuin (или SIRT) участвует в ряде биологических процессов, включая старение, воспаление и метаболизм. Предыдущие исследования показали, что SIRT3 сн...
02.06.21 10:45
0
1
Раскрыт секрет долгожителей о здоровом старение

Раскрыт секрет долгожителей о здоровом старение

В наиболее подробном геномном исследовании с участием людей старше 100 лет, исследователи сосредоточили внимание на нескольких конкретных генетических характеристиках, которые обеспечивают защиту от возрастных заболеваний.

Варианты генов, улучшающие процессы репарации ДНК, были особенно заметны именно у пожилых людей. Если хорошо питаться, часто заниматься спортом и избегать пагубных пороков, есть все основания надеяться на долгую и здоровую жизнь. Конечно, многие возрастные заболевания кажутся почти неизбежными, независимо от того, настигнут ли они вас в 80 или 90 лет. Но некоторые люди демонстрируют склонность к ...
05.05.21 10:15
3
2
Новый инструмент для редактирования генов «проникает» в ДНК клетки без разрезов

Новый инструмент для редактирования генов «проникает» в ДНК клетки без разрезов

CRISPR-Cas9 - революционный инструмент для редактирования генов, но у него есть и недостатки.

Ученые из Гарварда продемонстрировали альтернативную систему генной инженерии под названием Retron Library Recombineering (RLR), которая работает без разрезания ДНК и может быть быстро применена к огромным популяциям клеток. CRISPR работает как генетические ножницы, способные вносить точные изменения «вырезать и вставить» в геном живых клеток. Система может искать определенную последовательность ...
04.05.21 13:29
7