Ошибка!

Показать Ошибка!

Забыли пароль?

Ошибка!

Ошибка!

Скрыть Ошибка!

Скрыть Ошибка!

Забыли пароль? Напишите ваш email и мы отправим письмо с инструкциями.

Ошибка!

Обратно

Закрыть

Энтропия: от хаоса к порядку

Энтропия: от хаоса к порядку
Исследователи из США, пытаясь объединить крошечные частицы в полезные упорядоченные конгломераты, обнаружили неожиданного союзника: энтропию, под которой подразумевается «склонность» материи к беспорядку.


 

 

 

Компьютерное моделирование, произведенное специалистами из Университета в Мичигане (University of Michigan), показало, что энтропия способна «подталкивать» частицы к формированию организованных структур. Анализируя форму частиц, ученые теперь могут заранее прогнозировать, какой тип структуры должен образоваться.

Об этой работе рассказывается в еженедельном издании Science. Исследование поможет более точно установить принципы создания новых материалов с необычными свойствами, к примеру, для разработки специального покрытия для транспортных средств, изменяющего свою форму или улучшающего аэродинамические характеристики.

Профессор Шэрон Глотцер (Sharon Glotzer), занимающаяся физикой и химической инженерией, предполагает, что подобный материал можно будет получить, если предварительно подобрать определенные типы наночастиц, основываясь на желаемых качествах будущего материала. Наночастицы размером в тысячи раз меньше толщины паучьей нити способны группироваться в такие объекты, которые невозможно создать обычными химическими методами.

Главная задача заключается в том, чтобы «убедить» наночастицы объединиться в нужную структуру, однако недавние научные изыскания, осуществленные командой под руководством Шэрон Глотцер, продемонстрировали, что некоторые частицы простой геометрической формы начинают спонтанно группироваться, если их расположить на небольшом расстоянии друг от друга в замкнутом пространстве.

 

Модель кристаллообразной структуры, которая формируется из наночастиц в замкнутом пространстве 

 

Ученые попробовали выяснить, что произойдет, если выбрать другую форму частиц.

«Мы изучили 145 различных вариантов, и это дало нам гораздо больше информации о таких частицах, чем кто-либо когда-либо мог о них получить», - поясняет Шэрон. «Имея такие данные, мы можем поразмышлять над ответом на вопрос: как много видов структур реально создать, отталкиваясь лишь от формы частиц?»

Используя компьютерную программу, написанную исследователем в области химической инженерии, Майклом Энгелем (Michael Engel), аспирант прикладной физики Пабло Дамасцено (Pablo Damasceno) провел тысячи виртуальных экспериментов, наблюдая за тем, какие структуры образовывались из частиц определенной формы в зависимости от условий изначальной группировки. Программа способна работать с произвольными многогранными формами вроде игральных костей с любым количеством граней.

Оставленные без присмотра, свободно блуждающие частицы проявляют наивысшую степень энтропии. Это согласуется с идеей о том, что энтропия приводит к хаосу, если у частиц имеется достаточно свободного пространства: тогда они рассеиваются, двигаясь без какого-либо порядка. Но если частицы тесно сгруппированы, они начинают формировать кристаллические структуры – подобно атомам – даже несмотря на то, что они не способны создавать взаимные связи. Получается, что и такие, упорядоченные кристаллы представляют собой образования с высоким уровнем энтропии.

Шэрон отмечает, что на самом деле это - не появление порядка из хаоса: представления об энтропии нужно пересмотреть. Наоборот, исследователь называет энтропию «мерой возможностей». Если отключить гравитацию и высыпать содержимое сумки, набитой игральными костями, в контейнер, то кости разлетятся в разных направлениях. Но если продолжить добавлять новые кости, свободно пространства станет так мало, что игральные кости начнут «приставать» друг к другу. То же самое происходит и с наночастицами, которые настолько малы, что подвержены влиянию энтропии намного сильнее, чем воздействию гравитации.

 

Данный квазикристалл представляет собой структуру, в которой тетраедры "упакованы" наиболее плотно (Рекорд плотности укладки был побит командой Шэрон Глотцер в 2009 году)

 

«Все дело в возможностях максимально взаимодействовать между собой, которые открываются перед частицами именно благодаря упорядоченной структуре», - объясняет Шэрон.

Результаты моделирования указывают на то, что около 70 процентов  протестированных форм создают кристалло-подобные структуры под влиянием энтропии. Но ученые были особенно удивлены тем, насколько сложными получаются некоторые из этих структур – содержащие до 52 сгруппированных определенным образом частиц в «гранулах», из которых и составлен кристалл.

«Даже атомам чрезвычайно сложно образовать настолько сложные кристаллические структуры – не говоря уже о наночастицах, которые, в отличие от атомов, не обладают химическими связями», - подчеркивает Шэрон.

Исследованные формы частиц производят три типа кристаллов: обычные кристаллы наподобие соли, жидкие кристаллы, похожие на те, что используются в LCD-дисплеях, и пластические кристаллы, в которых частицы могут вращаться на месте. По словам Дамасцено, анализируя форму кристаллов и то, как группы частиц ведут себя перед кристаллизацией, можно предсказать, какой тип кристалла сформируют частицы.

 

Черные дыры, вероятно, играют важнейшую роль в процессах, связанных с энтропией Вселенной

 

«Секрет поведения частиц состоит в их геометрии», - замечает Пабло.

Хотя, почему оставшиеся 30 процентов не образуют кристаллические структуры, пока остается загадкой.

«Они, вероятно, хотят сформировать кристалл, но им что-то мешает. Поразительно, но с любой из таких частиц мы можем сопоставить частицы крайне похожей формы, которым удается создать упорядоченную структуру», - дополняет Шэрон.

Команда исследователей намерена не только лучше изучить способы группировки наночастиц, но и узнать, почему некоторые формы сопротивляются упорядочиванию.

Научная работа проводилась при поддержке Министерства обороны, а также министерства Энергетики США, Национального Научного Фонда и Германского Исследовательского Фонда. Статья озаглавлена «Прогнозируемая Само-организация Многогранников в Сложные Структуры».

N.B. Шэрон Глотцер является профессором химической инженерии в Университете в Мичигане, а также профессором материаловедения и макромолекулярной физики в Колледже Литературы, Науки и Искусств при Университете в Мичигане.

Комментарии:

Еще нет комментариев, станьте первым коментатором!
Войдите на зайт или зарегистрируйтесь, чтобы оставлять комментарии!
0
Ученые научились уничтожать жировые отложения в любом месте тела

Ученые научились уничтожать жировые отложения в любом месте тела

Жировые клетки профессионального спортсмена могут выглядеть совершенно иначе, чем клетки человека, страдающего ожирением, и технологии, позволяющие сделать одни из них более похожими на другие, могут открыть новые мощные методы лечения этого заболевания.

Ученые сообщают о захватывающем прогрессе в этой области, демонстрируя, как положительно заряженные наноматериалы можно вводить в нездоровый жир, чтобы вернуть его в здоровое состояние, закладывая основу для лечения, которое избирательно воздействует на жировые отложения в любом месте тела. Исследование, проведенное учеными из Колумбийского университета, было опубликовано в двух статьях и посвяще...
04.12.22 10:46
0
0
Телескоп Джеймса Уэбба дает беспрецедентное изображение призрачного света в скоплениях галактик

Телескоп Джеймса Уэбба дает беспрецедентное изображение призрачного света в скоплениях галактик

В скоплениях галактик есть часть звезд, которые уходят в межгалактическое пространство, потому что их вытягивают огромные приливные силы, возникающие между галактиками в скоплении. Свет, излучаемый этими звездами, называется внутрикластерным светом и очень слаб.

Его яркость составляет менее 1% от яркости самого темного неба, которое мы можем наблюдать с Земли. Это одна из причин, почему изображения, сделанные из космоса, очень ценны для их анализа. Инфракрасные волны позволяют исследовать скопления галактик иначе, чем с помощью видимого света. Благодаря его эффективности в инфракрасном диапазоне и четкости изображений телескопа Джеймса Уэбба, исследовате...
03.12.22 13:46
0
0
Исследование исключает первичные черные дыры как кандидатов в темную материю

Исследование исключает первичные черные дыры как кандидатов в темную материю

Первичные черные дыры — удивительные космические тела, которые активно исследуются астрофизиками всего мира. Исходя из названия, это черные дыры, которые появились на заре существования Вселенной, менее чем через секунду после Большого взрыва.

Теоретическая физика предполагает, что за долю секунды до образования Вселенной пространство не было полностью однородным, поэтому более плотные и горячие области могли коллапсировать в черные дыры. В зависимости от того, когда именно они образовались в течение этой доли секунды, эти первичные черные дыры могли быть очень разной массы и связанными с ней характеристиками.Некоторые физики-теоретики ...
02.12.22 09:01
0
0
Исследование Йельского университета раскрывает потенциальную причину болезни Альцгеймера

Исследование Йельского университета раскрывает потенциальную причину болезни Альцгеймера

Ученые из Йельского университета обнаружили упускаемый из виду механизм, который может стоять за симптомами болезни Альцгеймера. Команда указала на небольшие опухоли на аксонах возле бляшек, которые накапливаются в мозгу, и определила белок, который может быть биомаркером для раннего выявления заболевания, а также мишенью для будущих методов лечения.

В течение десятилетий преобладающая гипотеза о причине появления болезни Альцгеймера, вращалась вокруг амилоидных бляшек — запутанных скоплений белка бета-амилоида. Их накопление в мозгу пациентов с деменцией постоянно наблюдается с тех пор, как Алоис Альцгеймер впервые изучил ее более века назад. И ученые сосредоточили бы большую часть исследований на уменьшении и удалении этих бляшек, но, к сож...
01.12.22 10:16
0
0
«Химические нейроны» находят и обрабатывают данные, хранящиеся в ДНК

«Химические нейроны» находят и обрабатывают данные, хранящиеся в ДНК

Ученые экспериментировали со способами использования ДНК в качестве носителя данных, но трудно извлекать записанные на нее данные и манипулировать ими. Теперь команда разработала «химические нейроны», которые могут проводить вычисления с данными, хранящимися в ДНК, и легко считывать ответы.

Современные системы хранения данных могут впечатлять, но, как и во многих других случаях, природа сделала это намного эффективнее, чем все, чего мы достигли. Один грамм ДНК может хранить до 215 миллионов ГБ данных, что теоретически означает, что содержимое всего Интернета может храниться в чем-то размером с обувную коробку. Более того, при правильных условиях ДНК может существовать тысячи или даже...
28.11.22 07:46
0
1
Шелк шелкопряда, подвергнутый химической ванне, на 70% прочнее паучьей паутины

Шелк шелкопряда, подвергнутый химической ванне, на 70% прочнее паучьей паутины

Как один из самых прочных материалов, известных науке, паутина регулярно оказывается в центре захватывающих инженерных прорывов, и новое исследование, включающее быструю химическую ванну, может вывести это исследование на новый уровень.

Ученые разработали новый метод обработки шелка тутового шелкопряда, который меняет его состав и повышает производительность, при этом конечный продукт обладает на 70% большей прочностью, чем паучья паутина.Ученые работают над воспроизведением невероятных свойств паучьего шелка интересными способами. Разведение пауков для производства материала в больших количествах — одна из возможностей, но их те...
09.10.22 11:47
0
1
Нобелевская премия по физике присуждена исследователям квантовой запутанности

Нобелевская премия по физике присуждена исследователям квантовой запутанности

Нобелевская премия по физике 2022 года была присуждена трем ученым за их работу в области новаторской квантовой информатики. Ален Аспе, Джон Ф. Клаузер и Антон Цайлингер провели одни из первых экспериментов с запутанными фотонами, открыв будущее для коммерческих квантовых компьютеров.

Жуткий мир квантовой физики предсказывает несколько неожиданных странностей, включая квантовую запутанность. Это состояние позволяет двум частицам настолько переплестись друг с другом, что изменения, внесенные в одну, мгновенно повлияют на другую, независимо от того, насколько далеко они друг от друга. Эта идея обеспокоила даже Эйнштейна, который утверждал, что квантовая физика является «неполной...
05.10.22 07:18
0
0
Самой белой краской в мире теперь может покрывать автомобили и самолеты

Самой белой краской в мире теперь может покрывать автомобили и самолеты

В прошлом году инженеры из Университета Пердью использовали свой опыт в области материаловедения для производства самой белой в мире краски, способной отражать около 98% падающего солнечного света и, следовательно, обладающей большим потенциалом, когда речь идет об энергоэффективности зданий.

Команда внесла некоторые изменения в рецепт и выпустила более тонкую и легкую версию, которая, по их словам, идеально подходит для использования в автомобилях, поездах и самолетах. Первоначальная версия ультрабелой краски обязана своей исключительной способностью отражать солнечный свет включению сульфата бария - химического соединения, используемого в фотобумаге и косметике. Он был добавлен в см...
05.10.22 07:02
0