Ошибка!

Показать Ошибка!

Забыли пароль?

Ошибка!

Ошибка!

Скрыть Ошибка!

Скрыть Ошибка!

Забыли пароль? Напишите ваш email и мы отправим письмо с инструкциями.

Ошибка!

Обратно

Закрыть

Авиалайнеры. Next-Gen. Часть 2

Авиалайнеры. Next-Gen. Часть 2
В первой части статьи об авиалайнерах будущего мы рассказывали о «гибридных» самолетах, главной особенностью которых являются электрические двигатели. Во второй части речь пойдет об уникальных аэродинамических схемах, сверхзвуковых скоростях и высокой эффективности самолетов нового поколения.


 

MIT D8 "DOUBLE-BUBBLE"

Над созданием дизайна перспективных авиалайнеров работают не только «мейджеры» авиационной отрасли, но и группы исследователей в технических институтах. Концепт D8 с Pi-образным хвостовым оперением, под которым «спрятаны» два двигателя, был предложен Массачусетским технологическим институтом (MIT). Этот широкофюзеляжный самолет, вмещающий в два раза больше  рядов кресел, а значит и пассажиров на единицу длины (эту особенность в MIT обозначили эпитетом «double-bubble»), может прийти на смену популярным сейчас лайнерам Airbus A320 и Boeing 737.

Несмотря на то, что широкий фюзеляж будет встречать большее сопротивление воздуха по сравнению с более стройными A320 и 737, конструкция D8 в целом позволяет установить более легкие крылья и компактный хвост. Согласно расчетам инженеров из MIT, самолет должен стать весьма экономичным: ему потребуется на 70% меньше топлива, чем Boeing 737-800.

Авторы проекта, тестировавшие модель В8 в масштабе 1:11 в аэродинамической трубе при Исследовательском центре «Лэнгли» (NASA Langley Research Center), отмечают, что высокая эффективность достигается благодаря не типичному для современных пассажирских самолетов расположению и габаритам двигателей. Два небольших турбовентилятора, установленные в хвостовой части конструкции над фюзеляжем, втягивают обтекающие его поверхность потоки воздуха из пограничного слоя. Чтобы поддерживать такой же уровень тяги, как и в традиционных конструкциях, D8 требует меньше энергии.

 

Cal-Poly AMELIA

Еще одну эффективную конструкцию пассажирского самолета спроектировала группа студентов и выпускников из Калифорнийского политехнического университета (California Polytechnic State University, Cal-Poly). Они дали своему проекту имя AMELIA - Advanced Model for Extreme Lift and Improved Aeroacoustics, то есть «Продвинутая модель с высокой подъемной силой и улучшенной аэроакустикой». Экспериментальная модель весом более тонны, испытания которой провели в аэродинамической трубе в Калифорнии, сочетает в себе три главных летных качества, несовместимые друг с другом в традиционных конструкциях.

По словам лидера Проекта в области эффективной аэродинамики при NASA Майкла Роджерса, сейчас авиационные специалисты знают, «как сократить дистанцию, необходимую для взлета и посадки, с помощью каких способов можно снизить уровень шума, как создать более экономичный самолет», но задача AMELIA состояла в том, чтобы узнать, «получится ли объединить все три требования в одной машине».

Как правило, самолеты, предназначенные для взлета и посадки на более коротких авиа-полосах, имеют очень мощные и потому шумные двигатели, либо форма их крыльев создает отличную подъемную силу, но в полете на больших высотах заметно падает скорость движения воздушного судна или возрастает потребление топлива. Другими словами, крылья, позволяющие самолету эффективнее лететь «сквозь воздушное пространство» - на высокой скорости при меньшем сопротивлении воздуха – требуют более долгого разбега или торможения на земле.

Конфигурация крыльев и двигателей AMELIA, полномасштабный вариант которой сможет брать на борт до сотни пассажиров, помогут в 2025 году создать на ее основе эффективный и малошумный региональный лайнер, способный садиться и взлетать в небольших аэропортах вдали от мегаполисов.

Отметим уникальную черту AMELIA – систему «контроля циркуляции воздуха». Воздух под высоким давлением, полученный на выходе от реактивных двигателей «перенаправляется» в крылья, где выводится наружу через мелкие отверстия, расположенные вдоль переднего и заднего краев крыльев. Проходя над их поверхностью, выпущенный воздух взаимодействует с набегающим на крылья воздухом из внешней среды, увеличивая тем самым подъемную силу.

 

Boeing Icon II

Десятилетие назад, когда «Concorde» совершил свой последний полет, вместе с ним закончилась «золотая эра» сверхзвуковых пассажирских авиапутешествий. Основными причинами оказались  выявленные к тому времени недостатки его конструкции, которые ставили под угрозу безопасность людей, а также невероятно высокий уровень шума, ограничивавший возможности использования «Concorde» всего лишь до малого числа маршрутов.

Boeing не прочь открыть заново эпоху трансконтинентальных сверхзвуковых полетов, представляя собственные концепции реактивных пассажирских лайнеров. В частности, компания совместно с инженерами из NASA разработала перспективную модель Icon II.

Все ключевые элементы дизайна «иконы будущего авиастроения» призваны свести уровень шума к минимуму. Реактивные двигатели – в отличие от того же Concorde или советских Ту – располагаются над крыльями, что в какой-то мере «изолирует» производимый ими шум, а реактивные струи направлены не к земле, а от нее. V-образный «хвост» должен отводить звуковые удары, возникающие, как известно, в момент преодоления звукового барьера, назад. В этом случае звуковое возмущение дольше пробудет в районе (на высоте) полета лайнера, а значит, ударная волна заметно ослабнет, прежде чем достигнет земли – и наших ушей.

Результаты испытания тестовой модели в Исследовательском центре Джона Гленна при NASA позволяют надеяться, что «тихие» полеты на сверхзвуковой скорости не только над океанами, но и над заселенными территориями начнутся уже через 15-20 лет.

 

NASA "Hybrid Wing-Body" N3-X

Из множества альтернативных вариантов конструкций для авиалайнеров в NASA с особым интересом изучают схему «летающее крыло» - гибридную конструкцию, в которой крылья и «тело» самолета представляют собой единое целое (hybrid wing-body airframe, HWB).

Новейшая реализация этой схемы за авторством NASA представлена в футуристическом летательном аппарате N3-X. Что отличает его от похожих внешне самолетов? Прежде всего, это «распределенная» технология TeDP (turboelectric distributed propulsion) – «турбоэлектрическая распределенная тяга». Базовый принцип TeDP состоит в отделении компонентов, производящих тягу – то есть двигающих самолет вперед, от устройств, генерирующих энергию для двигателей.

Сложная на первый взгляд система на деле оказывается весьма простой: потоки воздуха вращают турбовентиляторы, энергия их вращения преобразуется в электрическую, которая затем питает пропеллеры двигателей. В N3-X на концах обеих крыльев расположено по одной турбине, которые производят энергию для 15 сверхпроводящих электромоторов, приводящих в движение «пропеллеры», создающие тягу. Кстати, подобная система используется в европейском проекте eConcept – о нем подробно рассказывается в первой части.

 

Ключевое слово здесь – «сверхпроводимость», для которой требуется «сверхохлаждение» генераторов, проводов и моторов. Для экстремального охлаждения можно использовать крио-установки, работающие на топливе, либо жидкий водород (LH2), для перевозки которого понадобятся отдельные контейнеры. Почему в случае с «электрическим» самолетом речь заходит о топливе? Оно необходимо для получения энергии на этапе взлета и посадки. Впрочем, топливо можно заменить и аккумуляторами: свободного пространства в корпусе N3-X хватит и для батарей, и для жидкого водорода.

В плане эксплуатации, N3-X - это крупный авиалайнер с размахом крыльев более 40 метров, вмещающий, по меньшей мере, 300 пассажиров. NASA относит свой проект к поколению N+3, то есть к самолетам, которые появятся через три поколения – после 2035 года.

 

Boeing "Blended Wing-Body" X48-C

А что готовят авиапроизводители для ближайших поколений гражданской авиации? Уже в следующем десятилетии в небо может подняться лайнер, созданный по схеме «Blended Wing-Body», схожей с гибридным летающим крылом N2/N3-X.

Но на этот раз за дело взялись специалисты из Boeing. Их первоначально военный проект X-48, созданный для демонстрации технологии BWB, прошел уже три стадии развития, за время которых X-48 совершил более 120 тестовых полетов. 30 из них приходится на последнюю модель Boeing – X48-C. Чтобы снизить уровень шума, в конструкцию внесли изменения, «отделив» винглеты (вертикальные части крыльев) от крыльев  и разместив их ближе к двигателям в качестве независимого «хвоста».

По мнению одного из главных технических специалистов Boeing Роберта Либека, в ходе испытаний X-48C разработчикам проекта удалось показать, что самолет, основанный на схеме «смешенного крыла», так же легко поддается управлению на всех важных этапах полета, включая взлет и посадку, как и самолеты традиционной конструкции – при этом обещая гораздо более низкий расход топлива и малый уровень шума.

 

Lockheed Martin "Box WIng Jet"

Lockheed Martin, известная своими военными проектами, участвует в поиске эффективных аэродинамических схем наравне с Boeing и NASA, при этом в гражданских самолетах специалисты компании собираются применять технологии из области военной авиации. Lockheed Martin является создателем знаменитых F-22 и F-35, и в своем новом проекте «Box Wing Jet» с замкнутой конструкцией крыла компания собирается использовать легкие материалы, разработанные ранее специально для истребителей.

Новый тип крыла должен заметно увеличить важнейший параметр практически для всех летающих машин: соотношение подъемной силы к силе сопротивления среды. Помимо изменения конструкции крыльев, инженеры Lockheed Martin предлагают установить более эффективные двухконтурные турбореактивные двигатели. Такие двигатели производят тягу не только при сжигании воздушно-топливной смеси в камере сгорания (как в обычных ТРД), но и за счет расположенных в передней части вентиляторов, прокачивающих воздух. Увеличив диаметр вентиляторов на половину, можно в несколько раз повысить долю тяги, создаваемой вентиляторами без сжигания топлива.

Благодаря всем своим нововведениям «Box Wing Jet» будет потреблять в два раза меньше топлива по сравнению с современными авиалайнерами, а замкнутое крыло с повышенной подъемной силой позволит самолету садиться, снизив до минимума мощность двигателей, что, по расчетам авторов проекта, сократит и уровень шума на 35 децибел. «Box Wing Jet» может подняться в воздух до 2025 года.

 

Lockheed Martin Supersonic Green Machine

Но если «Box Wing Jet» представляет собой дозвуковой авиалайнер, то целью другого проекта от Lockheed Martin стало преодоление скорости звука. Не исключено, что через два-три десятилетия конкуренцию сверхзвуковому пассажирскому лайнеру Boeing составит Supersonic Green Machine («сверхзвуковая зеленая машина») – «экологичный» самолет, развивающий скорость в 1.6 Mach.

Главным преимуществом SGM стоит признать его двигатели, способные менять режим своей работы. Во время взлета или посадки они будут переключаться в режим «стандартных» турбореактивных двигателей для экономии топлива и, очевидно, снижения уровня шума. Кроме того, выбросы оксида азота из новых двигателей сократятся на три четверти.

Но основным «врагом» сверхзвуковых самолетов, ограничивший в свое время полеты Concorde над континентальной частью Европы и Америки, как мы помним, является эффект прохождения звукового барьера. «Звуковой удар» наносят ударные волны, складывающиеся из волн сжатия, которые оставляет за собой самолет, двигающийся быстрее скорости звука.

По словам Питера Коэна, главного инспектора сверхзвуковых проектов, избавиться от чудовищного эффекта звуковых ударов можно, лишь меняя силу, позицию и характер взаимодействия ударных волн. С этой задачей должен справиться инвертированный (то есть перевернутый) V-образный хвост SGM: вместо продолжительной серии громких звуковых ударов от самолета будет исходить «глухой» гул, который наблюдателю на земле покажется не громче, чем шум от пылесоса.

 

Airbus/EADS Concept Plane

Заслуживает нашего внимания и концепция «бионического» авиалайнера от EADS company, владеющей Airbus. Внутренняя структура самолета, на создание которого потребуется не одно десятилетие, основана на свойствах «птичьих скелетов», обеспечивающих как необходимую в полете жесткость и прочность конструкции, так и ее минимальный вес.

Салон самолета предлагают облачить в интеллектуальную мембрану, способную становиться прозрачной, чтобы открыть пассажирам потрясающие панорамные виды. Однако и сам салон является интеллектуальной системой: его интегрированная компьютерная сеть предоставит интерфейс для взаимодействия пассажира и самолета. Авиалайнер будет определять потребности людей на его борту и автоматически реагировать на них, активируя различные функции и устройства, к примеру, адаптируя форму кресел под особенности и положение тела пассажира.

Традиционное разделение самолета на бизнес- и эконом-секторы уйдет в прошлое. В Airbus намерены заменить их «персонализированными зонами». «Vitalising zone» («Оживляющая зона») предназначена для релаксации, которой будет способствовать воздух, наполненный витаминами и антиоксидантами, ароматерапия, лунный свет и даже акупунктура.

«Interactive zone», расположенная в центре салона, служит для развлечений и общения. В ней при помощи виртуальных проекций можно создавать искусственное окружение для разных сценариев: от голографических игр до виртуальных примерочных. Для тех же, кто привык работать в полете, отведена «Smart tech zone».

Поднявшись в воздух, самолет сможет менять конфигурацию крыльев, делая их длиннее и тоньше. Так достигается снижение сопротивления среды, а это хороший способ экономить топливо. U-образный хвост будет действовать как «щит», рассеивающий шум от двигателей. Кстати, сами двигатели совместят с корпусом самолета, чтобы еще заметнее снизить потребление топлива и шум, передающийся в салон. По мнению экспертов из Airbus, в будущем технологии, применяющиеся в авиационных двигателях, выйдут на столь высокий уровень, что двигатели уже больше не будут нуждаться в регулярном обслуживании, а значит, их можно интегрировать в «тело» самолета.


 

В Airbus также уверены, что высоко-интеллектуальная авиация будет уметь «само-организовываться» и выбирать наиболее эффективные и безопасные для окружающей среды маршруты. На пользующихся особой популярностью направлениях самолеты станут летать не поодиночке – как это происходит сейчас, а группами.

V-формация из 25 лайнеров подобно стае птиц создаст более комфортные условия для большей части самолетов, включенных в «стаю». Сопротивление воздуха внутри такой формации окажется на десятки процентов ниже, чем за ее пределами.  

Комментарии:

Еще нет комментариев, станьте первым коментатором!
Войдите на зайт или зарегистрируйтесь, чтобы оставлять комментарии!
1
Телескоп Уэбба добрался до точки L2

Телескоп Уэбба добрался до точки L2

НАСА сообщило, что космический телескоп Джеймса Уэбба достиг своей орбиты в 1,5 млн. км. от планеты.

Около 22:00 по московскому времени обсерватория запустила двигатели на 5 минут, чтобы достичь второй точки Лагранжа (L2), где прлучит доступ почти к половине неба в любой момент. «Уэбб, добро пожаловать домой!» заявил директор НАСА Билл Нельсон. «Мы на один шаг ближе к раскрытию тайн Вселенной. Я не могу дождаться, чтобы увидеть первые новые взгляды Уэбба на Вселенную этим летом!» В этом регионе...
25.01.22 11:18
0
0
Постоянные астероидные дожди разрушают предыдущие представления о кратерах Марса

Постоянные астероидные дожди разрушают предыдущие представления о кратерах Марса

Исследование университета Нового Кертина подтвердило, что частота столкновений астероидов, образовавших ударные кратеры на Марсе, была постоянной на протяжении последних 600 миллионов лет.

В исследовании проанализировано образование более 500 крупных марсианских кратеров с использованием алгоритма обнаружения кратеров, ранее разработанного в Кертине, который автоматически подсчитывает видимые ударные кратеры на изображении с высоким разрешением. Несмотря на предыдущие исследования, предполагающие всплески частоты столкновений с астероидами, ведущий исследователь Энтони Лагейн из Шк...
24.01.22 15:27
0
-1
Квантовые точки улучшили перовскитные солнечные панели

Квантовые точки улучшили перовскитные солнечные панели

Солнечные элементы на основе перовскита прошли долгий путь за короткое время, но продолжают совершенствоваться. Теперь инженеры добавили в рецепт слой квантовых точек, в результате чего получился более стабильный солнечный элемент с почти рекордной эффективностью.

Перовскитные материалы делают солнечные батареи эффективными по нескольким причинам. Тонкие пленки из них способны эффективно поглощать весь спектр видимого света, они недорогие в изготовлении, легкие и гибкие. Но есть загвоздка. Перовскитные солнечные элементы имеют проблемы со стабильностью и могут разрушаться в реальных условиях, а их эффективность имеет тенденцию падать в больших масштабах. В...
22.01.22 14:11
0
3
Подтверждено эксцентричное слияние черных дыр

Подтверждено эксцентричное слияние черных дыр

Ученые считают, что впервые зафиксировали слияние двух черных дыр с эксцентричными орбитами.

Открытие поможет объяснить, почему некоторые из слияний черных дыр, обнаруженных LIGO Scientific Collaboration и Virgo Collaboration, намного тяжелее, чем считалось возможным ранее. Эксцентричные (вытянутые) орбиты могут быть признаком того, что черные дыры могут неоднократно поглощать другие во время случайных столкновений в областях, густо населенных черными дырами. Ученые изучили самую массивн...
21.01.22 11:33
0
1
Система-амфибия сочетает в себе мультикоптер с подводным дроном

Система-амфибия сочетает в себе мультикоптер с подводным дроном

Подводные дроны способны выполнять самые разные задачи, но доставить их к «месту погружения» все же бывает непросто. Новая система призвана помочь, используя воздушный дрон для транспортировки и развертывания подводного.

Гибридная установка Sea-Air Integrated Drone недавно была продемонстрирована в парке развлечений Hakkeijima Sea Paradise в Иокогаме. Она была создана в результате партнерства между японским оператором связи KDDI, производителем беспилотных летательных аппаратов Prodrone и фирмой по производству подводных роботов Qysea. В системе используется один из всепогодных мультикоптеров Prodrone, а также од...
12.01.22 10:52
0
3
Великолепный eVTOL Volar от Bellwether начинает летные испытания

Великолепный eVTOL Volar от Bellwether начинает летные испытания

Британская компания Bellwether Industries построила и запустила прототип потрясающего Volar eVTOL в половинном масштабе и готовится опубликовать отснятый материал. Это самый дерзкий футуристический дизайн летающего гиперкара для утопии, о которой даже в фантастике не осмеливаются мечтать.

Дизайн гиперкара будоражит воображение. Выглядит так, будто не двигаясь с места, он уже развивает скорость в 320 км. в час (200 миль в час). Его линии изящные, даже чувственные. Профиль острый как бритва. Скошенные решетки подчеркивают корпус и предупреждают о пугающей скорости. Короткий V-образный вырез хвостового оперения вызывает сходство с истребителем, но многослойный кузов и его роскошная бл...
02.01.22 15:05
1
12
Craft Aero предлагает новый тип крыла на еСВВП

Craft Aero предлагает новый тип крыла на еСВВП

Большинство стартапов еСВВП сосредоточены на аэротакси, где от двух до шести мест, но некоторые думают о большем.

GKN Aerospace и Kelekona, например, работают над тем, чтобы запустить в небо 30-50-местных монстров, используя в большей степени подход общественного транспорта. Калифорнийская Craft Aerospace стремится к чему-то посередине: девятиместному самолету с акцентом на междугородние региональные рейсы. И это делается с помощью силовой установки вертикального взлета и посадки, подобной которой мы никогда...
21.09.21 10:19
0
4
BAE Systems построит квадрокоптер, грузоподъемностью 300 килограмм

BAE Systems построит квадрокоптер, грузоподъемностью 300 килограмм

Учитывая, что маленькие дроны уже используются для доставки небольших грузов, логично, что гигантские дроны могут доставлять большие грузы. Это и предлагает BAE Systems со своим T-650 Heavy Lift Electric UAS.

Разработанный в сотрудничестве с британской компанией Malloy Aeronautics, Т-650 сможет поднимать полезные грузы весом до 300 кг (661 фунт), а затем переносить их на расстояние до 30 км (19 миль) на одном заряде батарей. Дальность действия без полезной нагрузки будет 80 км (50 миль). Он может летать автономно или дистанционно, достигая максимальной скорости 140 км/ч (87 миль в час). Информация о е...
15.09.21 10:30
0