В сочетании с другими методами лечения, такие как лучевая терапия или химиотерапия, тепло, применяемое непосредственно к опухоли, помогает повысить эффективность этих видов лечения и уменьшает необходимую дозу химических веществ или радиации.
Вот где вступают магнитные наночастицы. Эти шарики оксида железа, всего несколько десятков нанометров в диаметре, нагреваются, когда подвергаются воздействию мощного магнитного поля. Их цель состоит в том, чтобы довести тепло непосредственно к опухоли. Исследование материалов, выполненное в Центре нейтронных исследований NIST (Center for Neutron Research, NCNR), показало, что их магнитное поведение оказалось контринтуитивным для научной команды – открытие, что повлияет на то, какие частицы будут выбраны для конкретного лечения.
Выбор правильного вида частиц важен, ведь в зависимости от своей структуры, они доставляют разные дозы тепла к раковым клеткам. Некоторые быстро нагреваются, в то время как другие требуют сильное магнитное поле для начала движения, но, в конечном счете, доставляют больше тепла.
С коллегами из Школы медицины университета Джонса Хопкинса и Маниботского университета, команда изучила два вида железоокисных наночастиц, каждый из которых имеет разную внутреннюю структуру. В одном кристаллы оксида железа укладываются аккуратно, как кирпичи в стене, в другом – расположение более бессистемно, как шары в манеже. Подвергая оба вида переменному магнитному полю, команда обнаружила, что первому требуется более сильное поле для нагрева, чем ожидалось, в то время как случайные частицы разогрелись быстрее, даже когда поле было слабым.
Нейтронные эксперименты показали области различных размеров и форм в частицах. В каждом регионе, так называемые магнитные моменты однородны и указывают в одном направлении. Но сами регионы не совмещаться друг с другом. Это неожиданное поведение областей, оказывается, глубоко влияет на реакцию наночастиц в магнитном поле.
Комментарии: