На самом базовом уровне, батарея смартфона питается за счет миллиардов транзисторов с использованием электронов, чтобы включаться и выключаться миллиарды раз в секунду. Но если микрочипы могут использовать фотоны вместо электронов для обработки и передачи данных, компьютеры смогут работать даже быстрее.
Но для начала инженеры должны построить источник света, способный быстро переключаться. В то время как лазеры могут соответствовать этому требованию, они нуждаются в большом количестве энергии и громоздки для интеграции в компьютерные чипы.
Исследователи из Университета Дьюка на один шаг ближе к созданию подобного источника света. В новом исследовании, команда из Инженерной школы Пратта получила полупроводниковые квантовые точки для излучения света более чем 90 гигагерц. Это так называемое плазмонное устройство может в один прекрасный день быть использовано в оптических вычислительных чипах или для оптической связи между традиционными электронными микрочипами.
Исследование было опубликовано 27 июля в Nature Communications.
Новый рекорд скорости был установлен с помощью плазмоники. При лазерном свечении на поверхности серебренного куба всего 75 нанометров шириной, свободные электроны на его поверхности начинают вибрировать вместе в волне. Эти колебания создают свой собственный свет, который реагирует снова со свободными электронами. Энергия «в ловушке» на поверхности нанокуба таким образом называется плазмоном.
Плазмон создает интенсивное электромагнитное поле между серебряным нанокубом и тонким листом золота, помещенным лишь в 20 атомах. Это поле взаимодействует с квантовыми точками –сферами полупроводникового материала всего шесть нанометров шириной, – которые зажаты между нанокубом и золотом. Квантовые точки, в свою очередь, производят направленное, эффективное излучение фотонов, способных включаться и выключаться при более чем 90 гигагерцах.
Комментарии: