Поведение этой плазмы и процесс, с помощью которого она охлаждается для формирования материи, является одним из самых важных вопросов о ранней Вселенной. Поэтому так удивительно, что в американском коллайдере частиц RHIC (The Relativistic Heavy Ion Collider — релятивистский коллайдер тяжелых ионов) удалось воссоздать небольшое количество этой массы. Результаты этой работы были опубликованы в журнале Physical Review Letters.
Как можно представить, чтобы разорвать материю настолько, что даже адроны не могут образовываться в формы, требует большого количества входной энергии. В общем, было предположено, что адронный коллайдер сможет создать кварк-глюонной плазму, если столкнуть ядра с большим атомным весом. Большой адронный коллайдер и RHIC в прошлом уже создавали кварк-глюонную плазму путем столкновения тяжелых атомов, таких как свинец или золото.
Однако в новом эксперименте RHIC создал плазму, столкнув ядро атома гелия-3 с атомом золота, что ранее считалось невозможным. Количество плазмы было намного меньше, чем в экспериментах с тяжелыми атомами, но она пребывала в нужном состоянии достаточно долго, чтобы ученые смогли измерить ее свойства. Эксперимент доказал, что в таком состоянии материя представляет собой идеальную жидкость, имеющую нулевое внутреннее трение и не проводящую тепло. Это дает пищу для размышлений физикам, так как в реальных условиях идеальные жидкости не встречаются.
Но Большой взрыв, как предполагается, вызвал такое состояние у всей материи во Вселенной в один момент.
Ядро гелия-3 состоит из двух протонов и нейтрона, что делает его на один нейтрон легче, чем наиболее распространенный изотоп гелия на Земле. Это ядро было выбрано, так как оно на одну частицу тяжелее атома дейтерия, который использовался в Большом адронном коллайдере и RHIC для столкновений с золотом в аналогичных экспериментах. Столкновение с гелием было проведено еще в 2014 году, но результаты были опубликованы лишь сейчас. Команда провела несколько столкновений с единичными протонами в 2015 году, но их результаты пока не опубликованы.
Создание разных образцов кварк-глюонной плазмы может предоставить данные для исследований самых ранних событий в истории вселенной.
Комментарии: