Ошибка!

Показать Ошибка!

Забыли пароль?

Ошибка!

Ошибка!

Скрыть Ошибка!

Скрыть Ошибка!

Забыли пароль? Напишите ваш email и мы отправим письмо с инструкциями.

Ошибка!

Обратно

Закрыть

Космическая история объясняет свойства Меркурия, Венеры, Земли и Марса

Космическая история объясняет свойства Меркурия, Венеры, Земли и Марса
Астрономам удалось связать свойства внутренних планет Солнечной системы с космической историей: с появлением кольцевых структур во вращающемся диске из газа и пыли, в котором эти планеты были сформированы.


Кольца связаны с основными физическими свойствами, такими как переход от внешней области, где может образовываться лед, где вода может существовать только в виде водяного пара. Астрономы использовали большое количество симуляторов, чтобы исследовать различные возможности эволюции внутренних планет. Внутренние области Солнечной системы - редкий, но возможный результат этой эволюции.

Общая картина формирования планет вокруг звезд не менялась на протяжении десятилетий. Но многие особенности до сих пор остаются необъясненными, а поиск объяснений - важная часть текущих исследований. Группа астрономов во главе с Андре Изидоро из Университета Райса, в которую входит Бертрам Бич из Института астрономии Макса Планка, нашла объяснение того, почему внутренние планеты в Солнечной системе обладают свойствами, которые мы наблюдаем.

Вращающийся диск и кольца, которые меняют все

Рассматриваемая общая картина выглядит следующим образом: вокруг молодой звезды образуется «протопланетный диск» из газа и пыли, и внутри него вырастают все более крупные маленькие тела, в конечном итоге достигающие диаметра в тысячи километров, то есть молодые планеты. Но в последние годы, благодаря современным методам наблюдений, современная картина формирования планет уточнилась и изменилась в очень конкретных направлениях.

Самое поразительное изменение было вызвано снимком: первое изображение, полученное с помощью ALMA в 2014 году. На снимке был показан протопланетный диск вокруг молодой звезды HL Tauri с беспрецедентной детализацией, а самые потрясающие детали составили вложенную структуру четко видимых колец и зазоров в этом диске.

Когда исследователи, участвовавшие в моделировании структур протопланетных дисков, ознакомились с новыми наблюдениями, стало ясно, что такие кольца и зазоры обычно связаны со «скачками давления», где местное давление несколько ниже, чем в окружающих регионах. Эти локальные изменения обычно связаны с изменениями в составе диска, в основном с размером пылинок.

Три ключевых перехода, которые производят три кольца

В частности, есть скачки давления, связанные с особенно важными переходами в диске, которые можно напрямую связать с фундаментальной физикой. Очень близко к звезде, при температурах выше 1400 Кельвинов, силикатные соединения (например, «песчинки») являются газообразными - они просто слишком горячие, чтобы существовать в каком-либо другом состоянии. Это означает, что планеты не могут образовываться в таком жарком регионе. Ниже этой температуры силикатные соединения «сублимируются», то есть любые силикатные газы напрямую переходят в твердое состояние. Этот скачок давления определяет общую внутреннюю границу формирования планеты.

Дальше, при температуре 170 Кельвинов (-100 градусов Цельсия), есть переход между водяным паром с одной стороны и водяным льдом с другой, известный как водяной снег. (Причина, по которой температура намного ниже стандартных 0 градусов Цельсия, когда вода замерзает на Земле, - это гораздо более низкое давление по сравнению с атмосферой Земли.) При еще более низких температурах, 30 Кельвинов (-240 градусов Цельсия), это снежная линия CO; ниже этой температуры окись углерода образует твердый лед.

Удары давления как ловушки для гальки

Что это означает для образования планетных систем? Многочисленные предыдущие симуляции уже показали, как скачки давления способствуют образованию планетезималей - небольших объектов диаметром от 10 до 100 километров, которые являются строительными блоками для планет. Ведь процесс образования начинается намного-намного меньшего, с пылинок. Эти частицы пыли имеют тенденцию собираться на границе в области низкого давления, поскольку частицы определенного размера дрейфуют к звезде, пока не будут остановлены более высоким давлением на внутренней границе области.

По мере того как концентрация зерен на границе давления увеличивается, и, в частности, увеличивается соотношение твердого материала (который имеет тенденцию к агрегированию) к газу (который имеет тенденцию раздвигать зерна), этим зернам становится легче образовывать гальку, а им объединяться в более крупные объекты. Галька - это то, как астрономы называют твердые камни размером от нескольких миллиметров до нескольких сантиметров.

Роль скачков давления для (внутренней) Солнечной системы

Но то, что все еще оставалось открытым вопросом, так это роль субструктур в общей форме планетных систем, таких как Солнечная система с характерным распределением каменистых внутренних планет земного типа и внешних газообразных планет. Этим вопросом занялись Андре Изидоро (Университет Райса), Бертрам Битч из Института астрономии Макса Планка и их коллеги. В поисках ответов они объединили несколько симуляций, охватывающих разные аспекты и разные фазы формирования планет.

В частности, астрономы построили модель газового диска с тремя выступами давления на границе силикат-газ и на линиях воды и снежной линии CO. Затем смоделировали процесс роста и фрагментации пылинок в газовом диске, образование планетезималей, рост от планетезималей к планетным зародышам (от 100 км в диаметре до 2000 км) рядом с местом расположения Земли, рост планетарных зародышей до планет для планет земной группы и накопление планетезималей во вновь образованном поясе астероидов.

В Солнечной системе пояс астероидов между орбитами Марса и Юпитера стал домом для сотен небольших тел, которые, как полагают, являются остатками или фрагментами столкновения планетезималей в этом регионе, которые никогда не росли, чтобы сформировать зародыши планет, не говоря уже о планетах.


Вариации на планетарную тему

Интересный вопрос для моделирования заключается в следующем: если бы первоначальная установка была немного другой, был бы конечный результат похожим? Понимание таких вариаций важно для понимания того, какие из ингредиентов являются ключом к результату моделирования. Вот почему ученые проанализировали ряд различных сценариев с различными свойствами для состава и температурного профиля диска. В некоторых симуляциях они только воздействуют на давление силиката и водяного льда, в других – на все три.

Результаты предполагают прямую связь между появлением Солнечной системы и кольцевой структурой ее протопланетного диска. Бертрам Битч из Института астрономии Макса Планка, который участвовал как в планировании исследовательской программы, так и в разработке некоторых из используемых методов, говорит: «Для меня было полной неожиданностью, насколько хорошо наши модели смогли уловить развитие планетной системы, вплоть до немного отличающихся масс и химического состава Венеры, Земли и Марса».

Как и ожидалось, в моделях планетезимали в симуляциях образовывались естественным образом возле выступов давления в виде «космической пробки» для гальки, дрейфующей внутрь, которая затем была бы остановлена ??более высоким давлением на внутренней границе выступа давления.

Рецепт внутренней Солнечной системы

Для внутренних частей смоделированных систем исследователи определили правильные условия для образования чего-то вроде нашей Солнечной системы: если область сразу за внутренним (силикатным) выступом давления содержит планетезимали примерно в 2,5 массы Земли, они будут расти и образовывать тела размером с Марс - в соответствии с внутренними планетами Солнечной системы.

Более массивный диск или более высокая эффективность образования планетезималей вместо этого приведет к образованию «суперземлей», то есть значительно более массивных скалистых планет. Эти суперземли будут находиться на близкой орбите вокруг звезды, прямо напротив внутренней границы скачка давления. Существование границы также может объяснить, почему нет планеты ближе к Солнцу, чем Меркурий - необходимый материал просто испарился бы так близко к звезде.

Моделирование даже заходит так далеко, что объясняет несколько отличающийся химический состав Марса, с одной стороны, Земли и Венеры, с другой: в моделях Земля и Венера действительно собирают большую часть материала, который сформирует массу из регионов, более близких к Солнца, чем текущая орбита Земли (одна астрономическая единица). Аналоги Марса в симуляциях, напротив, были построены в основном из материалов из регионов немного дальше от Солнца.

Как построить пояс астероидов

За пределами орбиты Марса моделирование выявило область, которая вначале была малонаселенной или, в некоторых случаях, даже полностью пустой от планетезималей - предшественника современного пояса астероидов Солнечной системы. Тем не менее, некоторые планетезимали из зон внутри или непосредственно за пределами позже забредут в область пояса астероидов и окажутся в ловушке.

Когда планетезимали столкнулись, полученные более мелкие части сформировали то, что мы сегодня наблюдаем как астероиды. Моделирование даже может объяснить различные популяции астероидов: то, что астрономы называют астероидами S-типа, тела, состоящие в основном из кремнезема, будут остатками блуждающих объектов, происходящих из области вокруг Марса, а астероиды C-типа, которые преимущественно содержат углерод, будут остатками заблудших объектов из области, расположенной непосредственно за пределами пояса астероидов.

Внешние планеты и пояс Койпера

Во внешней области, сразу за выступом давления, который отмечает внутренний предел присутствия водяного льда, моделирование показывает начало образования планет-гигантов - планетезимали около этой границы обычно имеют общую массу от 40 до 100 раз больше массы Земли, что согласуется с оценками общей массы ядер планет-гигантов в Солнечной системе: Юпитера, Сатурна, Урана и Нептуна.

В этой ситуации самые массивные планетезимали быстро наберут больше массы. Настоящее моделирование не является продолжением (уже хорошо изученной) более поздней эволюции планет-гигантов, которая включает первоначально довольно плотную группу, из которой Уран и Нептун позже мигрировали на нынешние позиции.

И последнее, но не менее важное: моделирование может объяснить последний класс объектов и его свойства: так называемые объекты пояса Койпера, которые сформировались за пределами самого внешнего выступа давления, который отмечает внутреннюю границу существования льда с оксидом углерода. Это даже может объяснить небольшие различия в составе между известными объектами пояса Койпера: опять же, как различие между планетезималями, которые первоначально сформировались за пределами выпуклости давления снежной линии CO и остались там, и планетезималями, которые отклонились в пояс Койпера из прилегающей внутренней области планеты-гиганты.

Два основных результата и наша редкая Солнечная система

В целом, распространение моделирования привело к двум основным результатам: либо скачок давления на снежной линии водяной лед образовался очень рано; в этом случае внутренние и внешние области планетной системы разошлись довольно рано, в течение первых ста тысяч лет. Это привело к образованию маломассивных планет земной группы во внутренних частях системы, как произошло в нашей системе.

В качестве альтернативы, если выпуклость давления водяного льда образуется позже или не так выражена, большая масса может дрейфовать во внутреннюю область, что вместо этого приведет к образованию суперземель или мини-Нептунов во внутренних планетных системах. Данные наблюдений за экзопланетными системами, которые до сих пор находили астрономы, показывают, что этот случай намного более вероятен, а наша собственная Солнечная система - сравнительно редкий результат образования планет.

Перспективы

В этом исследовании астрономы сосредоточили свое внимание на внутренней части Солнечной системы и планетах земной группы. Затем они хотят запустить моделирование, включающее детали внешних областей, включая Юпитер, Сатурн, Уран и Нептун. Конечная цель - прийти к полному объяснению свойств нашей и других систем.

По крайней мере, для внутренней части Солнечной системы теперь известно, что ключевые свойства Земли и ближайшей к ней соседней планеты можно проследить до некоторой довольно простой физики: граница между замороженной водой и водяным паром, связанный с ней скачок давления в закрученном газовом диске и пыль, окружавшая молодое Солнце.

Результаты опубликованы в журнале Nature Astronomy.

Комментарии:

Еще нет комментариев, станьте первым коментатором!
Войдите на зайт или зарегистрируйтесь, чтобы оставлять комментарии!
1
Причины роста популярности Астрономии и Космоса среди молодого поколения

Причины роста популярности Астрономии и Космоса среди молодого поколения

Астрономия и космос всегда привлекали внимание людей всех возрастов, но особенно ярко эта наука проявляется среди молодого поколения.

Астрономия и космос всегда привлекали внимание людей всех возрастов, но особенно ярко эта наука проявляется среди молодого поколения. Многие факторы объясняют популярность астрономии среди молодых людей: от увлекательных открытий в области космоса до влияния культурных произведений. Сериалы, фильмы и другие произведения искусства о космических приключениях играют значительную роль в формировании ...
25.02.24 17:55
0
2
e-Learning в цифрах: 6 общих фактов, много данных и прогнозы на ближайшее будущее

e-Learning в цифрах: 6 общих фактов, много данных и прогнозы на ближайшее будущее

e-Learning – это обучение с помощью цифровых технологий (Интернета, электронных устройств и специальных программ). Процесс можно организовать в аудиториях или удалённо, одновременно для целой группы или по гибкому графику для каждого.

e-Learning – это обучение с помощью цифровых технологий (Интернета, электронных устройств и специальных программ). Процесс можно организовать в аудиториях или удалённо, одновременно для целой группы или по гибкому графику для каждого. Ранее эта система была не популярна. Затем вспыхнул COVID-19, и все перешли на «удалёнку»: школы, ВУЗы, компании. Электронное обучение стало нужным в глобальном мас...
28.12.23 18:10
0
7
Энергорезонатор Neutrino Power Cube - электроэнергия под воздействием невидимого спектра излучений

Энергорезонатор Neutrino Power Cube - электроэнергия под воздействием невидимого спектра излучений

Следующим этапом на пути к отказу от ископаемого топлива станут, вероятнее всего, энергетические технологии, связанные с возможностью преобразования энергии полей материи Луи де Бройля, обладающих корпускулярно-волновыми свойствами, в электрический ток.

Следующим этапом на пути к отказу от ископаемого топлива станут, вероятнее всего, энергетические технологии, связанные с возможностью преобразования энергии полей материи Луи де Бройля, обладающих корпускулярно-волновыми свойствами, в электрический ток. Это одно из перспективных направлений в науке, дающее серьёзный шанс диверсифицировать способы получения электроэнергии, а более конкретно, одно и...
30.09.23 06:25
0
11
Возобновляются работы по возведению грандиозного километрового небоскреба

Возобновляются работы по возведению грандиозного километрового небоскреба

Для архитектуры Саудовской Аравии 2023 год оказался просто невероятным. Сначала страна подтвердила, что строительство 170-километрового (105 миль) здания The Line будет продолжено, затем раскрыла планы строительства кубовидной башни, способной вместить 20 зданий Empire State Buildings.

Теперь страна возобновила реализацию своего амбициозного плана по строительству нового самого высокого здания в мире - башни Джидда. С момента завершения строительства в 2010 году дубайская башня Бурдж-Халифа (Burj Khalifa), высота которой составляет 828 м (2 717 футов), остается самым высоким рукотворным сооружением в мире. Хотя окончательная высота башни Джидда пока неизвестна, но она значитель...
22.09.23 09:06
0
1
Причины роста популярности Астрономии и Космоса среди молодого поколения

Причины роста популярности Астрономии и Космоса среди молодого поколения

Астрономия и космос всегда привлекали внимание людей всех возрастов, но особенно ярко эта наука проявляется среди молодого поколения.

Астрономия и космос всегда привлекали внимание людей всех возрастов, но особенно ярко эта наука проявляется среди молодого поколения. Многие факторы объясняют популярность астрономии среди молодых людей: от увлекательных открытий в области космоса до влияния культурных произведений. Сериалы, фильмы и другие произведения искусства о космических приключениях играют значительную роль в формировании ...
25.02.24 17:55
0
17
На далекой планете обнаружены намеки на жизнь

На далекой планете обнаружены намеки на жизнь

Данные космического телескопа Джеймса Уэбба (JWST) показали, что у экзопланеты вокруг звезды в созвездии Льва есть химические маркеры, которые на Земле связаны с живыми организмами. Но это смутные указания. Так насколько же вероятно, что на этой экзопланете обитает инопланетная жизнь?

Экзопланеты — это миры, вращающиеся вокруг других звезд. Планета, о которой идет речь, называется K2-18b. Она названа так потому, что это была первой открытой планетой, вращающейся вокруг красного карлика К2-18. Существует также K2-18c — вторая открытая планета. Сама звезда тусклее и холоднее Солнца, то есть для того, чтобы получить тот же уровень света, что и мы на Земле, планета должна быть намн...
17.09.23 11:48
0
4
Хищна черная дыра поедает звезду огромными кусками

Хищна черная дыра поедает звезду огромными кусками

Расположенная в соседней галактике солнцеподобная звезда постепенно съедается небольшой, но прожорливой черной дырой, теряя при каждом сближении с ней массу, эквивалентную трем Землям.

Открытие, сделанное астрономами Лестерского университета, опубликовано в журнале Nature Astronomy и представляет собой "недостающее звено" в наших знаниях о черных дырах, разрушающих орбитальные звезды. Оно позволяет предположить, что существует целый зверинец звезд, находящихся в процессе поглощения и до сих пор не обнаруженных. Астрономы обратили внимание на звезду благодаря яркой рентгеновской...
08.09.23 07:09
0
1
Индийские астрономы открыли новую кольцевую галактику

Индийские астрономы открыли новую кольцевую галактику

Совершенно случайно во время анализа данных обзора Dark Energy Camera Legacy Survey (DECaLS) астрономы из Университета Христа в Бангалоре (Индия) обнаружили новую кольцевую галактику, получившую обозначение DES J024008.08-551047.5. Она может принадлежать к редкому классу галактик с полярным кольцом.

Галактики с полярным кольцом (PRG) представляют собой системы, состоящие из S0-подобной галактики и полярного кольца, которые остаются раздельными в течение миллиардов лет. Обычно внешние полярные кольца, состоящие из газа и звезд, выстроены примерно перпендикулярно главной оси центральной галактики. На сегодняшний день открыто более 400 кандидатов в PRG, и только десятки из них были подтверждены...
05.09.23 16:01
0