В России уходящий научный год был ознаменован всенародным признанием нанотехнологий, сулящих невиданные и немыслимые возможности индустрии будущего, и именно с открытий в этой области мы начнем обзор наиболее значимых научных достижений, способных в скором будущем перенестись из мира науки в мир простых людей.
Главным нанособытием этого года, безусловно, стал наноматериал графен.
Еще одной интересной областью нанотехнологий, также много обсуждавшейся в уходящем году, является технология самосборки молекулярных и наноразмерных структур. Пока еще мало кто представляет себе, в каких условиях и из чего будущие нанотруженики будут по кусочкам собирать объекты привычного макромира, а также производить себе подобных. Однако уже в этом году немецким специалистам удалось заставить отдельные молекулы самостоятельно организовать упорядоченную структуру на поверхности подложки.
Стоит отметить, что в своей работе Клаус Керн и Марио Рубен использовали лишь геометрические параметры молекул. На следующем этапе ученым предстоит научиться использовать электрическую полярность молекул для создания более сложных систем как в мире супрамолекулярных образований, так и в мире наноструктур.
Вообще говоря, работы в направлении самособирающихся структур пока что выглядят очень бледно на фоне того, чему за миллиарды лет научилась природа.
Многие ученые полагают, что вместо повторного изобретения велосипеда можно гораздо эффективнее использовать и адаптировать технологии из мира живых систем.
Такой подход к настоящему времени успел выделиться в целое научное направление – биомиметику. Благодаря ему на свет в этом году появился материал с адгезионными свойствами, имитирующими способность к прилипанию мидий и ящериц, – гекконов, разработанный британскими специалистами.
Не останавливаясь на достигнутом, ученые из Индии создали адгезионную пленку, изучив способность к прилипанию лап древесных лягушек. Такие материалы выделяются среди прочих возможностью многократного использования, что обеспечит им применение в различных сферах медицинской, военной и строительной индустрии. Наверняка создатели не забудут и про массовых потребителей.
Не осталась без научных прорывов и технология химического синтеза. Специалисты в области полимеров научились применять для получения полимеров механическую энергию. Как известно, для вступления в химическую реакцию молекулы должны обладать дополнительной энергией, которую они, как правило, получают в форме теплового воздействия, давления, или света. Оказалось, что механическая энергия ультразвуковых колебаний способна полностью изменить ход реакции двух полимерных молекул и привести к образованию продукта, выход которого пренебрежимо мал при применении света или тепла в качестве возбуждающих молекулы факторов.
Метод механоактивации был известен довольно давно, однако в области полимерных молекул практически никогда не применялся, так как зачастую приводил к разрушению цепочечных молекул. Научной группе под руководством Джефрри Мура из Института штата Иллинойс в городе Урбана, США, удалось не только запустить альтернативный механизм привычной реакции, но и получить на выходе продукт, начисто лишенный примесей.
В будущем применение такого механоактивационного подхода в химии полимеров должно существенно упростить процесс получения многих новых материалов.
Другое достижение химиков-синтетиков связано с получением биологических молекул. Как правило, все они могут существовать в форме энантиомеров – пространственных изомеров, отличающихся, как наши правая и левая рука. Большинство таких молекул проявляют биологическую активность только в форме одного из хиральных изомеров. Синтез искусственных биологических молекул заданной симметрии сам по себе трудоемок и зачастую требует применения дорогих специфических катализаторов, которые, впрочем, не обеспечивают чистоты конечного продукта. Разделение же оптических изомеров – это, конечно, не разделение изотопов урана, но тоже задача не из простых.
Химики из Калифорнийского университета в Беркли в этом году впервые продемонстрировали новый тип катализаторов, позволяющих осуществлять хиральный синтез с высоким выходом конечного продукта (более 90%). Как правило, в качестве катализатора применяется комплекс переходного металла, в котором лиганды (молекулы, окружающие центральный катион) связаны с центральным атомом сильными ковалентными связями. Американцы же научились применять в качестве лигандов хиральные противоионы, притягиваемые к центральному атому (Au+1) относительно слабыми силами электростатического взаимодействия.
Кроме того, калифорнийцам удалось показать возможность комбинирования различных хиральных противоионов в синтезе биологических молекул, которая открывает широчайшие перспективы по искусственному получению огромного количества природных соединений, ранее просто недостижимых.
Особняком в этом году стоят достижения на стыке сразу трех наук – медицины, химии и биологии. Они относятся к разработке новых методов диагностики и лечения раковых заболеваний. Например, ученые научились применять наночастицы золота, чтобы буквально взрывать раковые клетки, сохраняя целостность здоровых, сумели разработать лекарства, избирательно доставляющие яды прямо к опухолям в обход здоровых тканей, а кроме того, наночастицы смогли увеличить чувствительность метода магнитной томографии, до сих пор остающейся единственным надежным инструментом в диагностике ранних стадий раковых заболеваний.
Не обошлось без прорывов и в чисто технических областях науки. Так, ученые сделали несколько важных шагов на пути к созданию квантовых вычислительных машин. Сначала они на практике смогли реализовать принцип передачи квантовой информации между двумя атомами, затем обосновали и разработали способ применения агломераций – газового конденсата Бозе-Эйнштейна – вместо отдельных атомов для хранения информации, а в довершение всего научились использовать твердотельные системы на основе фотонных кристаллов и квантовых точек в качестве схем перераспределения информации, применение которых возможно и в отрыве от квантовых компьютеров.
Немного порастерявшая свою популярность тема водородной энергетики и топливных элементов также не осталась без заметных научных свершений. Американским ученым удалось создать принципиально новый катализатор, ускоряющий процесс «холодного сжигания» топлива, оказавшийся впятеро эффективнее чистой платиновой черни – самого активного из прежде известных катализаторов водородных реакций. Кроме того, новый материал оказался существенно дешевле благодаря применению дешевой меди, повсеместно применяемой в электронной промышленности.
Гораздо более изящный метод добывания энергии из водорода и кислорода в топливных элементах продемонстрировали исследователи из американского штата Колорадо. Им удалось химическим путем присоединить углеродные нанотрубки к активному центру фермента-биологического катализатора и таким образом осуществить электронный перенос из мира биологических систем в мир кабелей, усилителей и трансформаторов.
Пока ученые работали только с гидрогеназой и думали о водородной энергетике, однако данный метод при подборе нужного фермента позволяет использовать энергию практически любой химической реакции. Помните электростанции искусственного разума из фильма «Матрица»?...
Комментарии: