Гибридные и электромобили сейчас ни у кого не вызывают удивления – наоборот, с каждым годом становится все более очевидным коммерческий успех, которого они достигнут в будущем. Но ведь электричество может приводить в движение не только колеса автомобилей, но и перспективные двигательные системы самолетов. Следует ли из этого, что появление «электрических авиа-лайнеров» не за горами?
eConcept
Современные самолеты производят много шума и сравнительно неэффективны в энергетическом плане. Авиалайнеры будущего, вероятно, окажутся лишены этих недостатков – по крайней мере, если амбициозная концепция под названием eConcept станет новым двигателем прогресса в авиационной отрасли.
Платформа eConcept, в разработке которой участвует европейский авиа-гигант EADS (European Aeronautic Defence and Space Company), интернациональная корпорация, владеющая компанией Airbus, совместно с Rolls-Royce Group, третьим по величине производителем авиационных двигателей в мире, призвана продемонстрировать, как умелое сочетание передовых технологий и новых материалов способствует созданию более тихих и эффективных самолетов.
«Мы сначала представляем себе что-нибудь невероятное, и затем стараемся понять, насколько вероятным это все же может стать», - рассуждает профессор Рик Паркер (Ric Parker), главный технический специалист Rolls-Royce Group. «То, чем мы занимаемся, не просто научная фантастика. Технологии, над которыми мы работаем, бросают вызов нашим возможностям, но, тем не менее, они не нарушают законов физики. Этого принципа мы и придерживаемся».
Амбициозные цели требуют неординарных подходов к их достижению, и Rolls Royce предлагает нечто, совершенно отличное от традиционной конструкции: электромотора, вращающего пропеллер – на такой схеме основаны некоторые из проектируемых сейчас «электросамолетов». Свою, альтернативную систему E-Thrust представители Rolls Royce называют «распределенной энергетической системой». Вместо нескольких двигателей, размещенных под крыльями самолета, E-Thrust использует единственную турбину в задней части фюзеляжа. «Турбина соединена с генератором и не создает тяги непосредственно для движения самолета», - отмечает Жан Ботти (Dr Jean Botti), который также является главным техническим специалистом, но сей раз в корпорации EADS. «Турбина нужна лишь как источник питания для генератора».
Такое расположение турбины должно привести к снижению сопротивления воздуха, которое возникает во время полета. Турбина втягивает в себя воздушные потоки, формирующие так называемый приграничный слой – воздушную зону у поверхности самолета, то есть основную область сопротивления движению сквозь атмосферу. Чем меньше эффект, вызванный сопротивлением, тем выше эффективность летательного аппарата.
«Обычный самолет выглядит как труба, с двумя крыльями по бокам, несущими по двигателю – разные части этой схемы создаются людьми, которые никогда и не встречались друг с другом», - заявляет Паркер. E–thrust, напротив, представляет собой единый дизайн, где система, образующая тягу, встроена прямо в корпус самолета. «Такая схема делает его более эффективным, даже если не использовать дополнительные технологии электропитания».
Что же касается сгенерированного благодаря турбине электричества, оно подается на шесть «туннельных вентиляторов», расположенных по трое в левой и правой части самолета, которые и обеспечивают лайнер тягой, необходимой для полета. Вентиляторы обладают более компактными размерами в сравнении с обычными авиа-двигателями, и потому их можно легко интегрировать в корпус самолета над крыльями, что еще заметнее снизит воздушное сопротивление и уровень шума.
Ключевая технология
Чтобы взлететь – в прямом и переносном смысле этого слова – eConcept понадобятся технологии, которыми мы владеем еще не в полной мере. Наверняка многие слышали термин «сверхпроводимость». Сверхпроводящие материалы характеризуются сверхнизким электрическим сопротивлением – моторы и токопроводящие кабели, изготовленные из таких материалов, будут тоньше, компактнее, а следовательно и легче по сравнению с современными. Заметим, что снижение веса конструкции самолета – это также один из важнейших способов увеличения его эффективности.
Впрочем, сверхпроводники обнаруживают свои особые свойства только при очень низких температурах, приближающихся к абсолютному нулю. Это значит, что на самолет потребуется установить криогенную систему охлаждения. Однако новейшие сверхпроводящие материалы не теряют своих свойств и при более высоких температурах. По словам Паркера, такие материалы существуют уже сегодня в лабораториях университетах – остается только научиться создавать на их основе конечные устройства.
Когда технологии наконец доведут до ума, авиа-лайнеры, основанные на платформе eConcept, смогут подняться в воздух. Эти самолеты будут концептуально схожи с популярными нынче гибридными автомобилями. Для накопления энергии предполагается использовать аккумуляторы, которые выступают как своеобразный энергетический буфер. При взлете, когда самолету необходимо максимальное количество энергии, генератор, получающий, как мы помним, электричество от турбины, а также аккумуляторы будут отдавать всю энергию двигателям. Затем, после того как лайнер достигнет крейсерской высоты (на ней проходит основная часть полета), часть энергии от турбины перейдет к аккумуляторам для их зарядки. Вентиляторы также смогут участвовать в процессе генерации энергии.
Все это выглядит настолько впечатляюще, что складывается представление, будто воплотить такие идеи в жизнь – дело отдаленного будущего. Между тем, компании, причастные к проекту, настаивают на том, что eConcept станет реальностью намного раньше, чем мы думаем. Паркер считает вероятным появление первых «гибридных самолетов» уже через 15-20 лет и надеется когда-нибудь подняться на борт лайнера будущего.
А пока EADS производит тестирование своих технологий в меньшем масштабе – на двуместном самолете E-Fan, на котором установлены два электрических двигателя. Размах крыльев E-Fan составляет 9 метров, а энергия поступает к двигателям от двух блоков, собранных из многоячеечных литий-ионных батарей. Как утверждают конструкторы E-Fan, этого запаса хватит примерно на час полета на скорости в 160 километров в час (100 mph).
Согласно планам EADS, E-Fan может осуществить свой первый полет уже до конца текущего года. Вслед за ним настанет и очередь пассажирских лайнеров, оснащенных системой E-Thrust.
VoltAir
Ну а если вы готовы подождать чуть дольше, у EADS найдется, чем вас удивить и к середине столетия. Это футуристичный концепт VoltAir – всецело электрический авиалайнер, внешне схожий с подводными скоростными аппаратами. Две литий-ионные батареи следующего поколения будут снабжать энергией два высокоэффективных сверхпроводящих электрических мотора, которые в свою очередь приводят в движение расположенные в задней части фюзеляжа два соосных спаренных пропеллера, вращающихся в противоположных относительно друг друга направлениях.
Аккумуляторы разместят в нижней части носового отсека самолета, из которого их можно будет без труда доставать и загружать обратно – как обычный багаж, прямо в аэропорту. Заряжать батареи предлагается сразу после извлечения из лайнера: таким образом, после приземления технические службы аэропорта снимают с самолета разрядившиеся в полете аккумуляторы и устанавливают на их место другие, полностью заряженные. Времени на эту процедуру потребуется не больше, чем на обычную заправку современного самолета топливом.
Как и в случае с eConcept, для создания способного на реальный полет лайнера VoltAir придется решить проблему производительности электрических моторов. Для повышения их мощности нужно справиться с потерями электроэнергии, к которым приводит сравнительно высокое электрическое сопротивление традиционных материалов (вроде меди), применяющихся для изготовления проводки и других компонентов электромотора. Выход из ситуации представляется – опять же – в использовании сверхпроводников, охлаждаемых жидким азотом.
Для снижения веса самолета специалисты EADS намерены использовать легкие материалы, вроде композита на основе карбона (углеволокна). Фюзеляж проектируется с соблюдением оптимального соотношения толщины самолета к его длине: больше внутреннего пространства для пассажиров при высокой обтекаемости конструкции. Пропеллеры, помещенные в хвосте лайнера, также улучшат его летные качества, поглощая «набегающие» воздушные потоки. Малый вес в сочетании с аэродинамическим дизайном позволят VoltAir развивать высокую скорость полета, производя минимум шума и не оставляя выбросов, за исключением безвредного азота.
SUGAR
Исследования «гибридных» технологий для авиации проводятся и по ту сторону Атлантики. Компания Boeing при поддержке американского аэрокосмического агентства NASA работает над проектом SUGAR (Subsonic Ultra Green Aircraft Research, проект дозвукового «ультра-зеленого» самолета). Аккумуляторы Sugar Volt, размещенные в центральной части самолета, будут заряжаться от электрической сети аэропорта, пока лайнер находится на земле.
Взлет должен осуществляться при помощи обычных двигателей, потребляющих авиационный керосин, однако, как только лайнер окажется на нужной высоте, он переключится на питание от аккумуляторов. Такая энергетическая схема потребует всего лишь около 30% топлива от количества, необходимого современным самолетам. Несмотря на то, что концепция SUGAR технологически более проста в сравнении проектами eConcept и VoltAir, для ее реализации инженеры Boeing должны создать производительные аккумуляторы очень высокой емкости. В этом случае мы станем свидетелями нового витка конкурентной борьбы между теперь уже гибридными лайнерами от Airbus и Boeng.
По материалам BBC Future и GizMag
Комментарии: